Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supplementary Information

Metal ion - humic acid nanoparticle interactions: role of both complexation and condensation mechanisms

Raewyn M. Town^{*a} and Herman P. van Leeuwen^b

^a Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark. Email: <u>raewyn.town@sdu.dk</u>

^b Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.

Table S1. Parameters defining the bulk and intraparticulate metal speciation in highly charged, soft nanoparticulate complex	xants ^(a)
Tuble bit i drameters demining the bain and merupar dediate metal spectation in mging charged, sold handput dediate complex	

M(II) species	Bulk aqueous medium	Intraparticulate double layer	Donnan volume	Governing physicochemical features
Free M	$c^*_{\mathrm{M,f}}$	$c_{\mathrm{M,f}}^{\mathrm{DL}}=\overline{f}_{\mathrm{B,M}}^{\mathrm{DL}}c_{\mathrm{M,f}}^{*}$	$c_{\mathrm{M,f}}^{\mathrm{D}}=\overline{f}_{\mathrm{B,M}}^{\mathrm{D}}c_{\mathrm{M,f}}^{*}$	Donnan
Condensed M		$c_{\mathrm{M,cond}}^{\mathrm{DL}} = \overline{f}_{\mathrm{C}} c_{\mathrm{S}}^{\mathrm{DL}}$	0 ^(b)	Counterion condensation
Inner-sphere MS ^(c)		$c_{\rm MS} = \overline{K}_{\rm int} c_{\rm S} c_{\rm M,f}$		Covalent binding
Total particle-associated M	$c_{\mathrm{MHA}}^{*} = \overline{K}_{\mathrm{app}} c_{\mathrm{S}}^{*} c_{\mathrm{M,f}}^{*}$			

^(a) The concentrations are denoted by: superscript * for smeared-out bulk solution concentration; superscript D or DL for local intraparticulate concentrations in the pertaining part of the particle volume; no superscript for the average intraparticulate concentration. The condensation limit for 2+ counterions in the DL with $\rho = \overline{\rho}_{DL}$ is denoted by \overline{f}_{c} . See main text for definitions of all symbols.

^(b) in the high charge density regime, with $\kappa_p r_p >> 1$, counterion condensation is confined to the intraparticulate double layer shell.

^(c) see eqn (8) in main text.