Supplementary material for the manuscript "Self-assembly of colloidal magnetic particles: Energy landscapes and structural transitions" J. Hernández-Rojas^a,* D. Chakrabarti^b,[†] and D. J. Wales^{c‡} ^a Departamento de Física and IUdEA, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain ^b School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom and ^c University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom ^{*}Electronic address: jhrojas@ull.es [†]Electronic address: d.chakrabarti@bham.ac.uk [‡]Electronic address: dw34@cam.ac.uk ### I. SUPPLEMENTARY MOVIE 1 LEGEND Movie for the fastest pathway connecting the chain structure with the global minimum for N = 14. #### II. SUPPLEMENTARY MOVIE 2 LEGEND Movie for the fastest pathway connecting the two lowest enery minima for N=27. ## III. SUPPLEMENTARY MOVIE 3 LEGEND Movie for the fastest pathway between a ring and a chain structure for N = 13 at magnetic field $B^* = 0.7$. The magnetic field vector is perpendicular to the page. # IV. SUPPLEMENTARY MOVIE 4 LEGEND Movie for the fastest pathway between a ring and a chain structure for N = 13 at magnetic field $B^* = 0.8$. The magnetic field vector is perpendicular to the page. ## V. SUPPLEMENTARY MOVIE 5 LEGEND Movie for the fastest pathway between a ring and a chain structure for N = 13 at magnetic field $B^* = 0.9$. The magnetic field vector is perpendicular to the page. ## VI. SUPPLEMENTARY MOVIE 6 LEGEND Movie for the fastest pathway between a ring and a chain structure for N = 13 at magnetic field $B^* = 15$. The magnetic field vector is perpendicular to the page. ## VII. SUPPLEMENTARY DATA Energy and coordinates of the global minima of spherical magnets up to N = 50.