Supplementary material for the manuscript "Self-assembly of colloidal magnetic particles: Energy landscapes and structural transitions"

J. Hernández-Rojas^a,* D. Chakrabarti^b,[†] and D. J. Wales^{c‡}

^a Departamento de Física and IUdEA,

Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain

^b School of Chemistry, University of Birmingham,

Edgbaston, Birmingham B15 2TT, United Kingdom and

^c University Chemical Laboratories, Lensfield Road,

Cambridge CB2 1EW, United Kingdom

^{*}Electronic address: jhrojas@ull.es

[†]Electronic address: d.chakrabarti@bham.ac.uk

[‡]Electronic address: dw34@cam.ac.uk

I. SUPPLEMENTARY MOVIE 1 LEGEND

Movie for the fastest pathway connecting the chain structure with the global minimum for N = 14.

II. SUPPLEMENTARY MOVIE 2 LEGEND

Movie for the fastest pathway connecting the two lowest enery minima for N=27.

III. SUPPLEMENTARY MOVIE 3 LEGEND

Movie for the fastest pathway between a ring and a chain structure for N = 13 at magnetic field $B^* = 0.7$. The magnetic field vector is perpendicular to the page.

IV. SUPPLEMENTARY MOVIE 4 LEGEND

Movie for the fastest pathway between a ring and a chain structure for N = 13 at magnetic field $B^* = 0.8$. The magnetic field vector is perpendicular to the page.

V. SUPPLEMENTARY MOVIE 5 LEGEND

Movie for the fastest pathway between a ring and a chain structure for N = 13 at magnetic field $B^* = 0.9$. The magnetic field vector is perpendicular to the page.

VI. SUPPLEMENTARY MOVIE 6 LEGEND

Movie for the fastest pathway between a ring and a chain structure for N = 13 at magnetic field $B^* = 15$. The magnetic field vector is perpendicular to the page.

VII. SUPPLEMENTARY DATA

Energy and coordinates of the global minima of spherical magnets up to N = 50.