Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information

Relationships between solution and solid-state properties of solutioncast low-k silica thin films

Chao-Ching Chiang,[†] Chien-You Su,[‡] An-Chih Yang,[†] Ting-Yu Wang,[§] Wen-Ya Lee,[⊥] Chi-Chung Hua*,[‡], Dun-Yen Kang*,[†]

[†]Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC

[‡]Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan,

ROC

§Electron Microscope Unit of Instrument Center, National Taiwan University, Taipei 10617,

Taiwan, ROC

¹Department of Chemical Engineering and Biotechnology, National Taipei University of

Technology, Taipei 10608, Taiwan, ROC

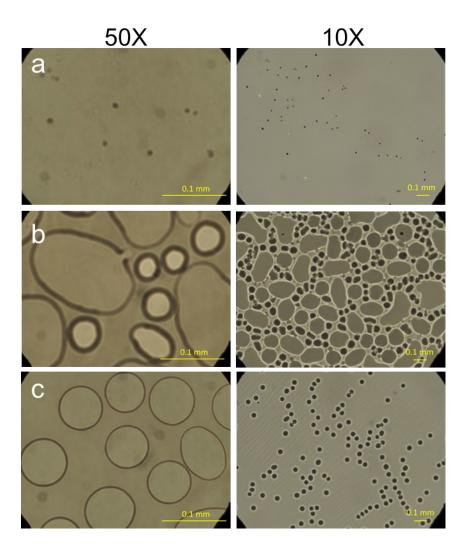
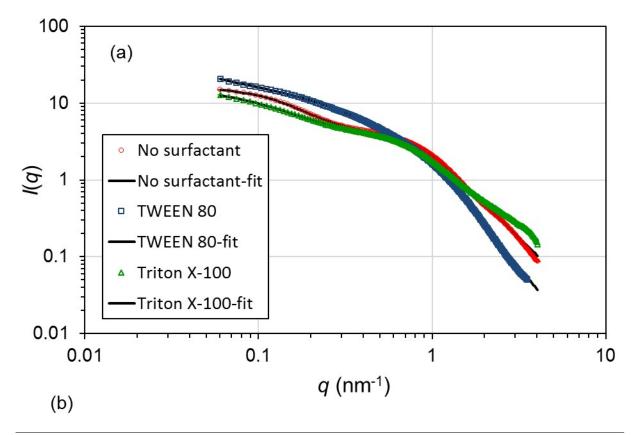



Fig. S1. OM images of natural drying, drop-casting thin films produced from the solutions with (a) no surfactant, (b) TWEEN[®] 80, or (c) TritonTM X-100 as the surfactant.

Fig. S2. Solution (left) versus gel (right) state produced from silica easting solutions with TWEEN® 80 at a surfactant concentration of (a) 20 wt% (the same as used in this work) and (b) 32 wt% after aging for 22 hr at room temperature.

Fitted parameters	G	R _g (nm)	В	R _{sub} (nm)	P	G_{s}	R _s (nm)	\mathbf{B}_{s}	$\mathbf{P}_{\mathbf{s}}$
No sufactant	8.68	14.2	0.21	13.0	1.8	8.12	4.6	2.17	2.2
TWEEN [®] 80	18.34	39.8	0.57	11.8	1.0	13.42	4.4	1.78	2.8
Triton [™] X-100	7.62	20.0	0.32	9.2	1.0	7.47	5.5	1.75	1.7

(c)
$$I(q) \approx G \exp\left(\frac{-q^2 R_{\rm g}^2}{3}\right) + B \exp\left(\frac{-q^2 R_{\rm sub}^2}{3}\right) \left[\frac{\left(erf\left(qR_{\rm g}/\sqrt{6}\right)\right)^3}{q}\right]^{P_{\rm s}}$$

$$+G_{\rm s} \exp\left(\frac{-q^2 R_{\rm s}^2}{3}\right) + B_{\rm s} \left[\frac{\left(erf\left(qR_{\rm g}/\sqrt{6}\right)\right)^3}{q}\right]^{P_{\rm s}}$$

Fig. S3. (a) Detailed fitting of full SAXS profiles as shown in **Fig. 5** for three casting solutions, (b) gathering of the fitted parameters, and (c) the expression utilized for the theoretical fit (G. Beaucage, in *Polymer Science: A Comprehensive Reference*, ed. M. Möller, Elsevier, Amsterdam, 2012, DOI: http://dx.doi.org/10.1016/B978-0-444-53349-4.00032-7, pp. 399-409).

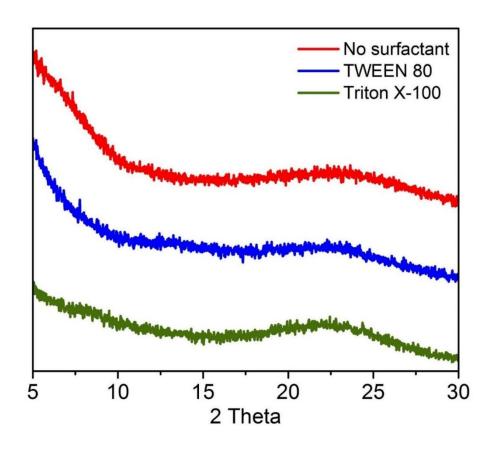
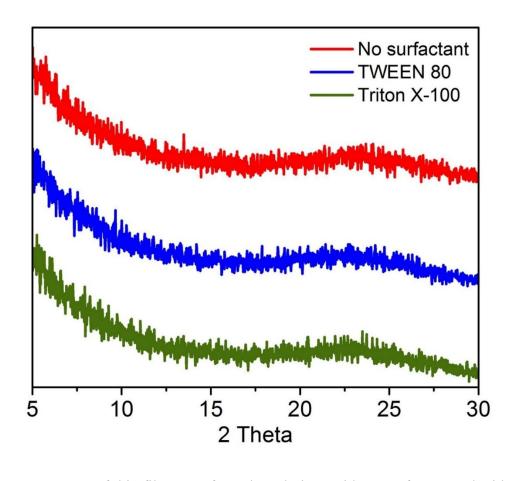



Fig. S4. XRD patterns of powder samples derived from colloidal silica solutions without surfactant and with TWEEN[®] 80 or TritonTM X-100 as the surfactant, respectively.

Fig. S5. GIXRD patterns of thin films cast from the solutions without surfactant and with TWEEN® 80 or Triton[™] X-100 as the surfactant, respectively.