## **Supporting Information**

## Water Desalination by Electrical Resonance inside Carbon Nanotube

Jia-wei Feng,<sup>a</sup> Hong-ming Ding,<sup>\*b</sup> and Yu-qiang Ma<sup>\*ab</sup>

<sup>a</sup> National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

<sup>b</sup> Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.

\* E-mail: dinghm@suda.edu.cn; myqiang@nju.edu.cn



Fig. S 1 (a) Water flow as a function of  $q_0$  when f is fixed at 13.3 *THz*. (b) Water flow as a function of f when  $q_0$  is fixed at 0.05 e. Dashed lines indicate the value of water flow inside a neutral CNT.



**Fig. S 2** (a) PMF of Cl<sup>-</sup> when  $q_0 = 0.05 \ e$ . (b) Energy barrier of Cl<sup>-</sup> as a function of frequency when  $q_0 = 0.05 \ e$ . Dotted lines in (a) represent the position of CNT.



Fig. S 3 (a) Number density of hydrogen bond and (b) peak of RDF as a function of Z in (20,0) CNT with vibrational charge  $q_0 = 0.05 e$  and f = 13.3 THz.



Fig. S 4 RDF of water around Na<sup>+</sup> in the case of  $q_0 = 0.00 e$ ,  $q_0 = 0.01 e$  and in bulk water. Inert shows a close view around the peak of RDF.



Fig. S 5 Comparison of energy barrier between TIP3P and TIP4P water models.

1–3



**Fig. S 6** (a) Ion flow inside (30,0) CNT as a function of  $q_0$  when f is fixed at 13.3 *THz*. (b) Ion flow inside (30,0) CNT as a function of f when  $q_0$  is fixed at 0.0667 e.