## **Supporting Information**

| Nr. | Atom | Х         | Y         | Ζ         |
|-----|------|-----------|-----------|-----------|
| 1   | С    | -1.199125 | 0.195487  | 0.007724  |
| 2   | С    | -1.204282 | -1.197737 | 0.007724  |
| 3   | С    | -0.000000 | -1.898098 | 0.006451  |
| 4   | С    | 1.204282  | -1.197737 | 0.007724  |
| 5   | С    | 1.199125  | 0.195487  | 0.007724  |
| 6   | С    | -0.000000 | 0.912818  | 0.005155  |
| 7   | Н    | -2.139587 | 0.735525  | 0.012573  |
| 8   | Н    | -2.145145 | -1.733580 | 0.012494  |
| 9   | Н    | -0.000000 | -2.980597 | 0.009400  |
| 10  | Н    | 2.145145  | -1.733580 | 0.012494  |
| 11  | Н    | 2.139587  | 0.735525  | 0.012573  |
| 12  | С    | -0.000000 | 2.415831  | -0.030217 |
| 13  | Н    | 0.882490  | 2.820789  | 0.462959  |
| 14  | Н    | -0.000000 | 2.778826  | -1.059173 |
| 15  | Н    | -0.882490 | 2.820789  | 0.462959  |

Table S1. Optimized geometry data of toluene by MP2/6-311++G(3df,2p) in Cartesian coordinates are shown in unit of angstrom. Number of atoms and Cartesian coordinates are shown in Fig. S1.



Fig. S1. Geometrical structure of toluene (C<sub>S</sub>).



Fig. S2. Active orbitals with orbital energies, which were obtained by the CASSCF calculation, are shown.

CASSCF wavefunctions:

 $\Phi_{S_0}(A') \equiv |\phi_{24}\overline{\phi}_{24}\phi_{25}\overline{\phi}_{25}| \text{ for the ground state configuration. } \Psi_{S_0}(A') = 0.975\Phi_{S_0(A')} + \mathsf{L} \text{ for the ground state.}$ 

The lower four singlet excited states are approximately expressed as a linear combination of the one-electron excited configurations as

$$\Psi_{S_{1}(A^{n})} = 0.524 \left( \left| \phi_{24} \overline{\phi}_{24} \phi_{25} \overline{\phi}_{26} \right| - \left| \phi_{24} \overline{\phi}_{24} \overline{\phi}_{25} \phi_{26} \right| \right) + 0.469 \left( \left| \phi_{24} \overline{\phi}_{27} \phi_{25} \overline{\phi}_{25} \right| - \left| \overline{\phi}_{24} \phi_{27} \phi_{25} \overline{\phi}_{25} \right| \right) \right)$$

$$\Psi_{S_{2}(A^{n})} = 0.511 \left( \left| \phi_{24} \overline{\phi}_{24} \phi_{25} \overline{\phi}_{27} \right| - \left| \phi_{24} \overline{\phi}_{24} \overline{\phi}_{25} \phi_{27} \right| \right) + 0.487 \left( \left| \phi_{24} \overline{\phi}_{26} \phi_{25} \overline{\phi}_{25} \right| - \left| \overline{\phi}_{24} \phi_{26} \phi_{25} \overline{\phi}_{25} \right| \right) \right)$$

$$\Psi_{S_{3}(A^{n})} = -0.458 \left( \left| \phi_{24} \overline{\phi}_{24} \phi_{25} \overline{\phi}_{26} \right| - \left| \phi_{24} \overline{\phi}_{24} \overline{\phi}_{25} \phi_{26} \right| \right) + 0.513 \left( \left| \phi_{24} \overline{\phi}_{27} \phi_{25} \overline{\phi}_{25} \right| - \left| \overline{\phi}_{24} \phi_{27} \phi_{25} \overline{\phi}_{25} \right| \right) \right)$$

$$\Psi_{S_{4}(A)} = -0.473 \left( \left| \phi_{24} \overline{\phi}_{24} \phi_{25} \overline{\phi}_{27} \right| - \left| \phi_{24} \overline{\phi}_{24} \overline{\phi}_{25} \phi_{27} \right| \right) + 0.498 \left( \left| \phi_{24} \overline{\phi}_{26} \phi_{25} \overline{\phi}_{25} \right| - \left| \overline{\phi}_{24} \phi_{26} \phi_{25} \overline{\phi}_{25} \right| \right) \right)$$



Fig. S3. Comparison of the excitation energies between the computational levels: CASSCF/6-311++G(3df,2p), MRCI/6-311++G(3df,2p) and experimental data<sup>(a), (b), (c)</sup>. Table S2. Data of the excitation energies calculated by CASSCF/6-311++G(3df,2p), MRCI/6-311++G(3df,2p) and experimental data<sup>(a), (b), (c)</sup>.

|              | E <sub>1</sub> [eV] | $E_2[eV]$          | E <sub>3</sub> [eV] | E <sub>4</sub> [eV] |
|--------------|---------------------|--------------------|---------------------|---------------------|
| CASSCF(4, 4) | 6.63                | 7.42               | 8.97                | 9.15                |
| MRCI         | 6.64                | 6.91               | 8.20                | 8.30                |
| Exp.         | 4.65 <sup>(a)</sup> | 6.2 <sup>(b)</sup> | 6.7 <sup>(b)</sup>  | 6.7 <sup>(b)</sup>  |
|              | 4.75 <sup>(c)</sup> | 6.0 <sup>(c)</sup> |                     |                     |

References

- (a) N. Ginsburg, W.W. Robertson, and F.A. Matsen, J. Chem. Phys., 9, 511 (1946).
- (b) M.B. Robin, Higher Excited states of Polyatomic Molecules. (Academia New York, 1975), Vol. 2.
- (c) B.D. Mistry, A Handbook of Spectroscopic Data Chemistry (UV, IR, PMR, 13CNMR and Mass Spectroscopy), Oxford Book Company, Jaipur, India, 2009). On pp. 16-17 4.75 eV for S<sub>1</sub>, and 6.0 eV for S<sub>2</sub> in Methanol (2%). There is no data for S<sub>3</sub> and S<sub>4</sub>.