Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Organic Heterocyclic Molecules go to Superalkali

G Naaresh Reddy^a and Santanab Giri^a*

^a Department of Chemistry, National Institute of Technology, Rourkela, 769008, India

Corresponding Author: giris@nitrkl.ac.in

Neutral and Cations [At b3lyp/6-31+G(d,p)]

Figure S-I: Optimized geometries, Ionization energies of neutral and cations of aromatic heterocyclic molecules.

Figure S-II: Optimized geometries, Ionization energies of neutral and cations of one C by N substituted aromatic heterocyclic molecules.

Figure S-III: Optimized geometries, Ionization energy of neutral and cation of benzene.

Figure S-IV: Optimized geometries, Ionization energy of neutral and cation of [C₅H₆N].

Neutrals Cations

IE = 7.816 eV [at b3lyp/6-31+G(d,p)]

Figure S-V: Optimized geometries, Ionization energy of neutral and cation of naphthalene

IE = 5.303 eV [at b3lyp/6-31+G(d,p)]

Figure S-VI: Optimized geometries, Ionization energy of one C by N substituted neutral and cation of naphthalene.

Neutrals Cations

IE = 7.034 eV [at b3lyp/6-31+G(d,p)]

Figure S-VII: Optimized geometries, Ionization energy of neutral and cation of anthracene.

IE = 5.459 eV [at b3lyp/6-31+G(d,p)]

Figure S-VIII: Optimized geometries, Ionization energy of one C by N substituted neutral and cation of anthracene.

Organic Reducing agents

IE = 6.982 eV [at b3lyp/6-31+G(d,p)]

Figure S-IX: Optimized geometries, Ionization energy of neutral and cation of 4-aminophenol

IE = 7.397 eV [at b3lyp/6-31+G(d,p)]

Figure S-X: Optimized geometries, Ionization energy of neutral and cation of 3-aminophenol.

IE = 7.512 eV [at b3lyp/6-31+G(d,p)]

Figure S-XI: Optimized geometries, Ionization energy of neutral and cation of indole.

IE = 4.210 eV [at b3lyp/6-31+G(d,p)]

Figure S-XII: Optimized geometries, Ionization energy of neutral and cation of $[C_{12}H_{16}N_4]$.