ELECTRONIC SUPPLEMENTARY INFORMATION (ESI):

NMR Spin-Spin Coupling Constants: Bond angle dependence of the sign and magnitude of the vicinal ${}^{3}J_{\text{HF}}$ coupling

Renan V. Viesser,^a Lucas C. Ducati,^{b*} Jochen Autschbach^{c*} and Cláudio F. Tormena^a

^{a)} Institute of Chemistry, University of Campinas – UNICAMP, P. O. Box 6154, 13083-970 Campinas, SP, Brazil.

^{b)} Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av.

Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil. E-mail: ducati@iq.usp.br

^{c)} Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New

York 14260-3000, USA. E-mail: jochena@buffalo.edu

Figure S1. SSCC (Hz) in terms of NBO decomposition for compound 3, in parentheses $-E^{(2)}$ (kcal mol⁻¹) delocalization associated with off-diagonal SSCC contribution.

Figure S2. SSCC (Hz) in terms of NBO decomposition for compound 4, in parentheses $-E^{(2)}$ (kcal mol⁻¹) delocalization associated with off-diagonal SSCC contribution.

Figure S3. SSCC (Hz) in terms of NBO decomposition for compound 5, in parentheses $-E^{(2)}$ (kcal mol⁻¹) delocalization associated with off-diagonal SSCC contribution.

Figure S4. SSCC (Hz) in terms of NBO decomposition for compound 6, in parentheses $-E^{(2)}$ (kcal mol⁻¹) delocalization associated with off-diagonal SSCC contribution.

Figure S5. Main ${}^{3}J_{H_{F}F}$ through-space (${}^{TS}J_{H_{F}F}$) and through-bond (${}^{TB}J_{H_{F}F}$) transmission mechanisms for compounds **3-6**.

Compound 6

θ	20		40		60		Equilibrium (63.2)		80		100		120	
Methods	PBE0	CCSD	PBE0	CCSD	PBE0	CCSD	PBE0	CCSD	PBE0	CCSD	PBE0	CCSD	PBE0	CCSD
$^{\rm FC}J$	51.5	46.0	42.1	27.7	23.2	15.7	24.1	16.0	14.4	9.8	11.8	5.7	11.0	5.4
$^{ m SD}\!J$	-0.4	-0.9	-1.3	-1.0	-0.7	-0.7	-0.6	-0.7	-0.1	-0.3	0.4	0.2	0.5	0.3
$^{ m PSO}J$	-7.7	-3.6	-4.3	-3.0	-4.3	-3.0	-4.5	-3.5	-4.5	-3.1	-4.3	-3.1	-3.6	-2.7
$^{ m DSO}J$	1.4	0.3	0.3	-0.1	-0.5	-0.5	-0.6	-0.6	-1.0	-0.9	-1.4	-1.5	-1.7	-1.7
total Jb	44.8	41.8	36.8	23.6	17.7	11.5	18.4	11.2	8.8	5.5	6.5	1.3	6.2	1.3
$J_{ m exp}$							19.	.63°						
r_{F-H_F}	1.838		2.213		2.580		2.606		2.919		3.221		3.477	
$r_{C-H_{\rm F}}$	1.089		1.0	1.091 1.0		091	1.078		1.090		1.090		1.091	
r _{C-F}	1.426		1.	.386 1.3		368	1.346		1.359		1.358		1.365	
∠ _{F-C=C}	100		110		120		122		130		140		150	
$\angle_{H_{F}}$ -C=C	100		110		120		121		130		140		150	
θ^d	20		40		60		63		80		100		120	

Table S1. Experimental $(J_{exp})^a$ and theoretical ${}^{3}J_{H_{F}F}$ (total J)^a coupling constants at the PBE0 and SOPPA(CCSD) levels of theory using TZ2P and aug-cc-pTVZ-J basis sets for fluoro-ethylene series from 20° to 120° angle between the $\sigma_{C\alpha-F}$ and $\sigma_{C\alpha'-H_{F}}$ vectors (θ). Distances $r_{F-H_{F}}$, $r_{C-H_{F}}$, and r_{C-F} (Angstrom) and bond angles were calculated at the MP2/aug-cc-pVTZ level.

^a in Hz. ^b total $J = {}^{FC}J + {}^{SD}J + {}^{PSO}J + {}^{DSO}J$. ^c V. S. Watts, J. H. Goldstein, J. Chem. Phys., 1965, **42**, 228-233. ^d Angle between the $\sigma_{C\alpha-F}$ and $\sigma_{C\alpha'-H_F}$ vectors.

Table S2. NLMO contributions^a for ${}^{3}J_{H_{F}F}$ (in Hz) at PBE0/TZ2P varying the angle between the $\sigma_{C\alpha-F}$ and $\sigma_{C\alpha'-H_{F}}$ vectors of fluoro-ethylene from 60° to 120°.

Parent NBO	60			80				100		120			
	J ^(L)	$J^{(\mathrm{NL})}$	$J^{(ext{L+NL})}$	$J^{(L)}$	$J^{(\mathrm{NL})}$	$J^{(ext{L+NL})}$	$J^{(L)}$	$J^{(\mathrm{NL})}$	$J^{(L+\mathrm{NL})}$	$J^{(L)}$	$J^{(\mathrm{NL})}$	$J^{(ext{L+NL})}$	
CR (F)	3.23	0.01	3.24	2.93	-0.01	2.92	3.00	-0.02	2.98	3.08	0.03	3.11	
$LP_1(F)$	-12.03	0.08	-11.94	-11.57	-0.43	-12.00	-11.12	-0.61	-11.73	-10.42	-0.44	-10.86	
$LP_2(F)$	-2.92	-0.08	-3.01	0.60	0.13	0.73	4.18	0.38	4.56	6.80	0.66	7.46	
$LP_3(F)$	1.60	-0.68	0.92	0.66	-1.00	-0.35	-0.03	-1.12	-1.15	-0.28	-1.01	-1.29	
$\sigma_{C\alpha-C\alpha'}$	0.41	0.01	0.42	-0.06	0.05	-0.01	-0.48	0.07	-0.41	-0.72	0.09	-0.63	
$\pi_{C\alpha=C\alpha}$	-4.52	0.23	-4.29	-4.39	0.40	-3.99	-3.82	0.53	-3.29	-3.33	0.70	-2.63	
$\sigma_{C\alpha\text{-}H\beta}$	2.49	0.64	3.13	2.68	1.27	3.94	2.36	1.93	4.29	1.85	2.58	4.43	
$\sigma_{C\alpha'-H\beta'}$	-0.21	3.05	2.84	-0.73	3.18	2.45	-0.88	2.77	1.89	-0.65	1.98	1.33	
$\sigma_{C\alpha\text{'-H}_F}$	14.18	5.76	19.94	9.58	2.72	12.31	7.54	0.83	8.37	6.62	-0.61	6.01	
$\sigma_{C\alpha\text{-}F}$	6.71	-0.08	6.63	3.38	0.06	3.45	1.62	0.11	1.73	0.29	0.07	0.36	
Sum	9.05	9.02	18.07	3.42	6.45	9.87	2.89	4.96	7.85	3.86	4.12	7.98	

 $\overline{{}^{a}J^{(L)} - \text{Lewis, }J^{(NL)} - \text{Non-Lewis, }J^{(L+NL)} = J^{(L)} + J^{(NL)}.}$

Figure S6. SSCC (Hz) in terms of NBO decomposition for fluoro-ethylene with 60° angle value between the $\sigma_{C\alpha-F}$ and $\sigma_{C\alpha'-H_F}$ vectors, in parentheses - $E^{(2)}$ (kcal mol⁻¹) delocalization associated with off-diagonal SSCC contribution.

Figure S7. SSCC (Hz) in terms of NBO decomposition for fluoro-ethylene with 80° angle value between the $\sigma_{C\alpha-F}$ and $\sigma_{C\alpha'-H_F}$ vectors, in parentheses -*E*⁽²⁾ (kcal mol⁻¹) delocalization associated with off-diagonal SSCC contribution.

Figure S8. SSCC (Hz) in terms of NBO decomposition for fluoro-ethylene with 100° angle value between the $\sigma_{C\alpha-F}$ and $\sigma_{C\alpha'-H_F}$ vectors, in parentheses -*E*⁽²⁾ (kcal mol⁻¹) delocalization associated with off-diagonal SSCC contribution.

Figure S9. SSCC (Hz) in terms of NBO decomposition for fluoro-ethylene with 120° angle value between the $\sigma_{C\alpha-F}$ and $\sigma_{C\alpha'-H_F}$ vectors, in parentheses - $E^{(2)}$ (kcal mol⁻¹) delocalization associated with off-diagonal SSCC contribution.

Figure S10. Main ${}^{3}J_{H_{F}F}$ through-space (${}^{TS}J_{H_{F}F}$) and through-bond (${}^{TB}J_{H_{F}F}$) transmission mechanisms for fluoroethylene.

