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COMPUTATIONAL METHODS

Theoretical background

In order to study the feasibility of the low energy electron (LEE) catalyzed isomerization reaction,

the kinetic energy of the LEE at which it is resonantly captured to the target isomer (i.e., the

attachment energy), the minimum energy isomerization path for the resulting eS-adduct and the

autoionization decay width along the reaction path are to be computed. If the eS-adduct is stable

against autoionization, i.e., the lifetime of the eS-adduct is in the order of vibrational period,

then the eS-adduct can relax its geometry by disposing the excess electronic energy to one of its

nuclear relaxation modes; a path that may then evolve to the eP-adduct. The quantum chemical

computation of resonant formation and the relaxation of the eS-adduct is a highly challenging task

due to the autoionization of the resonantly captured electron, i.e., the wavefunction correspond

to the eS-adduct belongs to the non-L2 domain of the Hamiltonian. Recently, however, methods

based on the analytical continuation of the Hamiltonian to its non-L2 domain were developed

which enable one to directly use the existing L2 computational methods, i.e., bound state ab initio

methods, for computing the resonant formation and autoionization of the eS-adducts [1]. The

associated eigen functions of the analytically continued Hamiltonian are square integrable, i.e.,

they can be represented in L2 space. This enable us to use the ab initio bound state methods for

the eS-adduct. The corresponding electronic energy of the eS-adduct is complex-valued.

E = Eres − iΓ/2 (1)

The real and imaginary parts of the complex eigenvalues of the analytically continued Hamiltonian

correspond to the energy position and the autoionization decay width (twice the imaginary part), of

the eS-adduct, respectively. The physical eigen solutions of the analytically continued Hamiltonian

are identified as stabilized eigen functions in the complex energy plane, where the stabilization is

determined against the variation of the analytical continuation parameter [1].

Negative imaginary potentials (NIP) have been traditionally used for the analytical continua-

tion for the eS-adduct of the molecular substrates [1–4]. The molecular Hamiltonian of the eS-

adduct is perturbed by an appropriate local, positive-semidefinite one-electron negative imaginary

potential,−iηŴ , with the property of being zero in the interaction region [3, 4].

Ĥ(η) = Ĥ − iηŴ (2)
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This potential enforces an absorbing boundary condition and, consequently, the autoionizing (de-

caying) wavefunction is transformed into a bound state eigen solution of the resulting analytically

continued Hamiltonian. The physical solutions are identified as the stable solutions against the

variation of the strength of the non-negative parameter η. Recently, we have proposed a con-

tinuum remover complex absorbing potential where a real-valued potential is added to the con-

ventionally used negative imaginary potential in the peripheral of the molecule [5–7]. While the

negative imaginary part of the continuum remover complex potential introduces the analytical

continuation, the real part of the potential perturbatively remove the artificial stabilization of the

discretised continuum due to the use of finite basis sets. We have used this continuum remover

potential as our choice of the analytical continuation method for computing the electronic energy

and the reaction path of the eS-adduct.

A Cartesian box-shaped continuum remover complex absorbing one-electron potential of the

form

Ŵmodified = (1 − iη)
∑

χ=x,y,z

χ2(1 − 0.5[tanh(χ+ 7.5 + χ0)

−tanh(χ− 7.5 − χ0)])

(3)

is used for the calculation, where χo is the average distance between the two terminating atoms of

the molecule along the χ-axis and η is the strength of the negative imaginary part of the complex

potential. When used with out the negative imaginary part, i.e., for η = 0, the remaining real-

valued continuum remover potential method acts as a modified L2-stabilization method, where the

electronic state of the eS-adduct are localized in the interaction region of the physical Hamilto-

nian [6]. We have used the real-valued continuum remover potential method [6] in conjunction

with ab initio electron correlation methods to get the reaction paths and the attachment energies.

The real-valued continuum remover potential also shares the property of the NIP, that it leaves the

interaction region untouched and only ‘turns on’ asymptotically with the NIP. When used with

a large basis set, the real-valued continuum remover potential method gives the optimally pro-

jected wavefunction of the eS-adduct inside the interaction region of the Hamiltonian. Hence,

the real-valued continuum potential method is a very powerful, yet easily employable method for

computing the chemical reactions of the eS-adduct. Since the details of this method is described

elsewhere [6, 7], only the essential computational details pertaining to this work are briefly dis-

cussed here.
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Computational details

The computation of the energy of eS-adduct is done as follows. Since the real-valued continuum

remover potential is a one- electron potential, we have added the potential directly to the Fock

operator. This also implies that no modifications to the post Hartree-Fock methods needed to be

made. The user-modified one-electron integral subroutines are used for implementing the con-

tinuum remover potential to Hartree-Fock calculation. All the molecular calculations presented

in this Communication are carried out using an in-house modified GAMESS-US quantum chem-

istry package [8]. An atom-centred STO 6-311G+* basis set is used as a parent basis set for all

the calculation. This parent basis set is further augmented with a set of even-tempered primitive

Gaussian functions. Such large basis set is essential to get the geometrically important points and

accurate reaction paths corresponding to the eS-adduct [6].

Atom Type Exponent Atom Type Exponent Atom Type Exponent

s 0.0043800 s 0.0084500 s 0.0087255

0.0004380 0.0008450 0.0018798

C 0.0000438 O 0.0000845 S 0.0004050

0.0000044 0.0000085 0.0000636

p 0.0004380 p 0.0008450 p 0.0090561

0.0000044 0.0000085 0.0020250

The minimum energy path of the non-catalytic reaction and the eS-adduct are computed using

second order restricted and restricted-open-shell Møller-Plesset methods, respectively. A planar

symmetry of the molecule is saved for all the reactions paths given in this Communication. In the

case of cyclic dimer reported in the Communication, the molecular symmetry is also preserved for

a symmetric migration of the two hydrogen atoms. Electronic energy along the isomerization path

corresponding to the neutral molecule and the eS-adduct are further improved using the coupled

cluster singles and doubles (CCSD) method and electron-attachment equation-of-motion coupled

cluster singles and doubles (EA-EOMCCSD) method [9], respectively. The electronic energies

plotted in figures 1-4 are computed using these two methods. The EA-EOMCCSD method in

conjunction with the real-valued continuum remover potential is capable of computing the kinetic

energy of the LEE corresponding to the resonant capture processes and the electronic energy of

the eS-adduct using a direct difference approach where consistent treatment of electron correlation
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is applied for both the ground state of the neutral molecules and their eS-adducts [6]. Finally, the

autoionization decay width is computed using continuum remover complex absorbing method at

the static and exchange level. The lifetime of the eS-adduct is in the order of 10−14 s and remains

more or less constant along the non-catalytic path.
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