Cite this: DOI: 10.1039/xxxxxxxxxx

Received Date
Accepted Date

DOI: 10.1039/xxxxxxxxxx
www.rsc.org/journalname

New approach to understand the NMR relaxivity properties of cobalt ferrite nanoparticles - Electronic Supplementary information ${ }^{\dagger}$

Anne-Laure Rollet, ${ }^{* a}$ Sophie Neveu, ${ }^{a \ddagger}$ Patrice Porion, ${ }^{b \ddagger}$ Vincent Dupuis, ${ }^{a \ddagger}$ Nadine Cherrak, ${ }^{a \ddagger}$ and Pierre Levitz ${ }^{a, c}$

Abstract

The synthesis of ferrite coablt nanoparticles for each set of samples is detailed. The influence of several parameters (the anisotropy constant, the damping factor, the dead layer and the τ_{0}) used in the model are detailed here. The linear dependences of the relaxation rate versus the volume fraction of MNPs are shown for several temperatures. The Arrhenius plot of the relaxivities at 20 MHz is presented and from the linear regression an activation energy is obtained.

1 Ferrite Cobalt nanoparticles samples

The protocol used for each sample is detailed in a table 1. The TEM images and the size distribution for all the samples used in this study are also provided figure 1. The distribution is fitted using a log-normal law:

$$
\begin{equation*}
f\left(d, d_{0}, \sigma\right)=\frac{1}{d \sigma \sqrt{2 \pi}} \exp \left(-\frac{\left(\ln D-\ln D_{0}\right)^{2}}{2 \sigma^{2}}\right) \tag{1}
\end{equation*}
$$

with σ the standard deviation of the distribution.

Sample	Synthesis	$\mathrm{D}_{\text {TEM }}(\mathrm{nm})$	$\sigma_{T E M}$
S1	coprecipitation and size-sorting	4.7	0.47
S2	coprecipitation and size-sorting	5.8	0.53
S3	coprecipitation with complexing species	5.9	0.41
S4	coprecipitation with complexing species	6.8	0.43
S5	coprecipitation and size-sorting	7.9	0.44
S6	coprecipitation process	8.5	0.4
S7	coprecipitation process	10.1	0.62
S8	coprecipitation process	10.6	0.44
S9	coprecipitation process	10.6	0.42
S10	coprecipitation and size-sorting	10.7	0.45
S11	hydrothermal process	12.7	0.28
S12	hydrothermal process	16.2	0.28
S13	hydrothermal process	18.7	0.41

Table 1 Samples used in this study.

[^0]
1.1 Coprecipitation process

$\mathrm{CoFe}_{2} \mathrm{O}_{4}$ nanoparticles are obtained by precipitating Co (II) and Fe(III) hydroxydes followed by a heating at boiling temperature. For a typical synthesis, sodium hydroxide ($160 \mathrm{~mL}, 10 \mathrm{~mol} . \mathrm{L}^{-1}$) was abruptly added under vigorous stirring to a solution of cobalt and ferric nitrate $\left(350 \mathrm{~mL},[\mathrm{M}]=[\mathrm{Fe}]+[\mathrm{Co}]=0.44 \mathrm{~mol} . \mathrm{L}^{-1}\right.$, $[\mathrm{Co}] /[\mathrm{Fe}]=0.4)$. After stirring 30 minutes, a nonmagnetic amorphous suspension was obtained and heated at $100^{\circ} \mathrm{C}$ for 2 hours. The mixture became magnetic was washed three times with distilled water. The second step to obtain a cobalt ferrite ionic magnetic fluid is the dispersion of the magnetic nanoparticles. In order to stabilize the nanoparticles in neutral aqueous solution, the particles were coated by citrate species. After stirring 30 minutes in citrate solution, citrated magnetic nanoparticles were dispersed in water and the final product was a stable ionic magnetic fluid with a pH around 7. The size of the nanoparticles thus obtained was around 10 nm . We obtained by this process an aqueous magnetic fluid at $\mathrm{pH}=7$ (samples S6, S7, S8 and S9).

1.2 Coprecipitation and size-sorting

In order to obtain monodisperse magnetic fluid, we used the size sorting process described in ref ${ }^{1}$. This size sorting process is based on the thermodynamical properties of aqueous dispersion of cobalt ferrite synthesized by the coprecipitation process described above. This process allows to fractionate the particle size distribution and to obtain samples S1, S2, S5 and S10.

1.3 Coprecipitation in the presence of complexing species

In order to obtain smaller particles, the coprecipitation process was realized in the presence of complexing species such as tartrate ions as described in reference ${ }^{2}$. The size of the nanoparticles
thus obtained was around 5 nm (samples S3 and S4).

1.4 Hydrothermal process

In order to obtain bigger particles, instead of heating at boiling two hours, the hydroxydes were heated in an autoclave at $200^{\circ} \mathrm{C}$, during 24 hours as described in reference ${ }^{3}$. The size of the nanoparticles thus obtained was around 20 nm (samples S11, S12 and S13).

2 Theoritical Model

Here we present the effect of some parameters used in the model. As underlined in the main text, no fit was performed on the experimental data. We have used the values found in the litterature. However, we must stress that some parameters being difficult to measure, they may be a matter of debate. Hence, we show here the influence of these parameters on the different contributions of R_{1} (transverse, Curie, and Curie fluctuation), idem for R_{2} as well as the total r_{1} and r_{2}. These parameters are: the anisotropy constant, the damping factor, the dead layer, and tau0. We have performed these calculations for a dispersion of 8 nm MNPs in water.

2.1 effect of anisotropy constant

The anisotropy constant appears in $\tau_{/ /}$and τ_{\perp}. Hence, both the first and the thrid terms, named transversal and Curie fluctuation terms respectively, of R_{1} equation will be influenced. The second term, the Curie term is not affected. When the anisotropy increases, we see in Figure 2, that r_{1} and r_{2} at low frequency is increased and the bump around 10 MHz disappears. In the expression of R_{2}, it appears in the first and third terms of the C component and the $V\left(\omega_{I}\right)$ component. The first terms are also named transversal term and the third terms are named the Curie fluctuation terms.

2.2 effect of the damping factor

The damping factor appears in the time τ_{\perp}. Hence, it must have influence only on the first term, named transversal term, of the R_{1} equation. In the expression of R_{2}, it appears in the first term of the C component and in the first term of the $V\left(\omega_{I}\right)$ component. In the text, we have also referred these two terms as transversal term. With no surprised, we see that only the transversal term is influenced by the damping factor. It tends to decreases $R_{1-\text { trans }}$ and $R_{2-\text { trans }}$ especially at high frequency.

3 NMR relaxation measurement

$3.1 \quad R_{1}$ and R_{2} dependence in concentration

The relaxivities $r_{1}=\left(R_{1} /[\mathrm{Fe}+\mathrm{Co}]\right)^{-1}$ and $r_{2}=\left(R_{2} /[\mathrm{Fe}+\mathrm{Co}]\right)^{-1}$ were determined using five MNPs dispersions with the iron and

2.3 effect of the dead layer

The dead layer is the non magnetic layer at the surface of the MNPs. In consequence, it affects the magnetic volume of the MNPs that influences all the components of R_{1} and R_{2}.

2.4 effect of the τ_{0}

The τ_{0} parameter is the prefactor of the Neel time expression. It will therefore affect all the component containing the Néel time.
cobalt concentration $[\mathrm{Fe}+\mathrm{Co}]$ ranging from 0.5 to 20 mM , approximately. In this range, $R_{1}=1 / T_{1}$ and $R_{2}=1 / T_{2}$ varies linearly with $[\mathrm{Fe}+\mathrm{Co}]$, and the R_{1} and R_{2} values are obtained with a linear regression. Figure S 6 presents the variation of R_{1} and R_{2} as a function of the volume fraction ϕ in \%. The slope gives a relaxivity in $\mathrm{s}^{-1} \%^{-1}$ and the conversion factor α, to $\mathrm{s}^{-1} \mathrm{mM}^{-1}$ is $\alpha=(d n) /(100000 M)=1.47610^{-3}$ with d the density of cobalt ferrite ($5300 \mathrm{~kg} / \mathrm{m}^{3}$), n the number of metal mole (cobalt + iron) in the cobalt ferrite compound and M the molar mass (234.619 $\mathrm{g} / \mathrm{mol}$).

$3.2 \quad R_{1}$ and R_{2} dependence in temperature

The evolution of R_{1} and R_{2} versus the MNPs volume fraction ϕ is presented for five temperatures ($10,17,25,33$ and $40^{\circ} \mathrm{C}$). The linear evolution versus ϕ is observed for all the temperatures. This is a good indicator that the dispersion is stable and no aggregation of MNPs occurs. The temperature dependence of R_{1} and R_{2} for a medium size sample is presented in figures S 7 and S 8 , respectively. The Neperian logarithms of R_{1} and R_{2} vary linearly with $1 / R T$. A linear regression is performed in order to get the corresponding activation energy. The variations shown here for a 10.6 nm typify those observed for all samples.

References

1 S. Lefebure, E. Dubois, V. Cabuil, S. Neveu and R. Massart, J. Mater. Res., 1998, 13, 2975-2981.
2 S. Neveu, A. Bée, M. Robineau and D. Talbot, J. Colloid Interface Sci., 2002, 255, 293-298.
3 V. Cabuil, V. Dupuis, D. Talbot and S. Neveu, J. Magn. Magn. Mat., 2011, 323, 1238-1241.

Fig. 1 TEM images and the size distribution for all the samples used in this study (for the name, see table 1).

Fig. 2 Effect of the anisotropy constant on the relaxivity r_{1} on the left (top) and on the relaxivity r_{2} on the right (top), as well as its effect on the three components (transversal term, Curie term and Curie fluctuation term).

Fig. 3 Effect of the damping factor on the relaxivity r_{1} on the left (top) and on the relaxivity r_{2} on the right (top), as well as its effect on the three components (transversal term, Curie term and Curie fluctuation term).

Fig. 4 Effect of the dead layer on the relaxivity r_{1} on the left (top) and on the relaxivity r_{2} on the right (top), as well as its effect on the three components (transversal term, Curie term and Curie fluctuation term).

Fig. 5 Effect of τ_{0} on the relaxivity r_{1} on the left (top) and on the relaxivity r_{2} on the right (top), as well as its effect on the three components (transversal term, Curie term and Curie fluctuation term).

Fig. 6 Variation of the relaxation rates R_{1} and R_{2} as a function of the volume fraction ϕ in $\%$ at 60 MHz for two temperatures $\left(25^{\circ} \mathrm{C}\right.$ and $40^{\circ} \mathrm{C}$. The lines represent the linear regression on the experimental data.

Fig. 7 Top: variations of the relaxation rates R_{1} as a function of the volume fraction ϕ in $\%$ at 20 MHz for five temperatures ($10,17,25,33$ and $40^{\circ} \mathrm{C}$); the lines represent the linear regression on the experimental data. Bottom: varation of the neperian logarithm of R_{1} versus $1 / R T$; the line represents the linear regression on the experimental data.

Fig. 8 Top: variations of the relaxation rates R_{2} as a function of the volume fraction ϕ in $\%$ at 20 MHz for five temperatures ($10,17,25,33$ and $40^{\circ} \mathrm{C}$); the lines represent the linear regression on the experimental data. Bottom: varation of the neperian logarithm of R_{2} versus $1 / R T$; the line represents the linear regression on the experimental data.

[^0]: a PHENIX, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de PhysicoChimie des Electrolytes et Nanosystème Interfaciaux (PHENIX) Paris, France.
 ${ }^{b}$ laboratoire Interfaces, Confinement, MatÃlrriaux et Nanostructures - ICMN Interfaces, Confinement, Matériaux et Nanostructures - ICMN, CNRS, Université Orléans, Orléans, France.
 ${ }^{\text {c }}$ Physique de la Matière condensée (PMC), CNRS, Ecole Polytechnique, Palaiseau, France.

