Supplementary Materials

Tuning the band gap and polarization in BaSnO₃/SrSnO₃

superlattices for photovoltaic applications

Yajun Zhang¹, MPK Sahoo^{1,2,3}, Jie Wang^{1,2*}

¹Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, 38 Zheda Road, Hangzhou 310007, China

²Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310007, China

³Department of Physics, RGUKT IIIT, Nuzvid Campus, Andhra Pradesh, India

Fig. S1 Phonon dispersion curves of cubic phase for (a) BaSnO₃ and (b) SrSnO₃. The imaginary frequencies (unstable modes) are depicted as negative values.

^{*} E-mail:jw@zju.edu.cn

Fig. S2 The calculated band gap for cubic $BaSnO_3$ as a function of (a) biaxial strain and (b) hydrostatic pressure.

Fig. S3 Total density of states of cubic BaSnO₃, (a) under different biaxial strains and (b) under different hydrostatic pressure. The Fermi level is set to zero.