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S1 Derivation of the electrostatic Hamilto-

nian

This section is devoted to the evaluation of the electrostatic effective Hamil-
tonian Hes (i.e. Eq. (3) of the text) for the triply degenerate electronic state
T2g in an octahedral system, which has JT active modes egi and t2gi with 
i = 1, 2. To the best of our knowledge, the derivation of the electrostatic
Hamiltonian up to quadratic terms containing bilinear and coupling terms
among JT active modes were not reported in the literature. To set up the
electrostatic Hamiltonian, we select the following electronic basis set [1]

ψξ = ηζf(r)
ψη = ξζf(r)
ψζ = ξηf(r), (S1)

where f(r) is an exponential or Gaussian radial function.
The electrostatic Hamiltonian Hes was expanded at the reference struc-

ture of the T2g normal coordinates Qǫi , Qθi , Qξi , Qηi and Qζi for each JT
active mode up to second order including all possible coupling between egi
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and t2gi
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(1)
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where H
(1)
τi =

(
∂Hes

∂Qτi

)

0
, H

(2)
τi = 1

2

(
∂2Hes

∂Q2
τi

)

0
and H

(1)
τiτj =

(
∂Hes

∂2Qτi
Qτj

)

0
. Note

that the superscript τi,j ∈ {ǫi,j , θi,j , ξi,j , ηi,j , ζi,j}, where i and j are 1 and 2.

Next step is to calculate the matrix elements of operators of typesH
(1)
τi Qτi ,

H
(2)
τi Q2

τi
and H

(1)
τiτjQτiQτj using electronic basis set of T2g of Eq. (S1). These

matrix elements transform as do the components of the irreducible repre-
sentation T2g of the symmetry point group Oh, namely, ξ, η and ζ. Since
Qτi , Q

2
τi
and QτiQτj do not operate on the electronic basis sets, it is required

to calculate matrix elements of H
(1)
τiτj , H

(2)
τi and H

(1)
τiτj . Qτi , QτiQτj and Q2

τi

are considered as multiplying factors. For the evaluation of matrix elements,
we have used the method described in Ref. [2]. Since operators H

(1)
τiτj , H

(1)
τiτj

and H
(2)
τi have the same transformation properties as Qτi , Q

2
τi
and QτiQτj , we

should find irreps and their components according to which the operators Q2
τi

and QτiQτj transform. This can be understood easily by using the formula
of the irreducible products of operators Qτi and Qτj [2]

M c
γ := (Qa ×Qb)cγ = λ(c)1/2

∑

αβ

V

(
a b c

α β γ

)

Qa
αQ

b
β, (S3)

where := means equal by definition. Note that operators Qa
α and Qb

β trans-
form as do components α and β of irreducible representations a and b, respec-

tively, V

(
a b c

α β γ

)

coefficients corresponding to the the octahedral group

Oh can be found in Ref. [2]. λ(c) is the dimension of irreducible representa-
tions c and the sum is over all possible components of a and b. For example,
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in the case of trigonal coordinates Qξ, Qη and Qζ , the sum is over the com-
ponents triply degenerate irrep T2g of symmetry group Oh. Note that if
c ∈ a× b, Eq. (S3) spans the irrep c, otherwise is zero.

By employing the method described above, we proceed to derive the
T2g ⊗ (t2g + t2g) part of JT problem. For other parts, the same method
is applicable. To handle this problem, we first consider the linear terms of
the t2g components of Eq. (S2). In this case, H

(1)
τi ’s transform as T2g. Since

operators H
(1)
τi ’s have the same transformation properties as Qτi and the co-

ordinate Qτi ’s transforms according to the components of ξ, η and ζ, thus
non-zero matrix elements of linear JT Hamiltonian read

〈ψµ|Qτi |ψν〉 = κTi
|ǫαµν |Qτi , (S4)

where κTi
is constant and ǫτµν is the Levi-Civita symbol, and µ, ν and τ ∈

{ξ, η, ζ}. Therefore, the non-zero matrix elements are

〈ψξ|Qζi |ψη〉 = κTi
Qζi (S5)

In the next stage, we should consider bilinear terms such as H
(1)
αiβi

Qαi
Qβi

.
We need to know the transformation properties of QτiQτi . This can be un-
derstood by using Eq. (S3). Therefore, we have

M
T2g
ξi

= 2
√
3V

(
T2g T2g T2g

ηi ζi ξi

)

QT2g

ηi
Q
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ζi
= −

√
2
[

QT2g

ηi
Q

T2g

ζi

]

MT2g
ηi

= 2
√
3V

(
T2g T2g T2g

ξi ζi ηi

)

Q
T2g

ξi
Q

T2g

ζi
= −

√
2
[

Q
T2g

ζi
Q

T2g

ξi

]

M
T2g
ζi

= 2
√
3V

(
T2g T2g T2g

ξi ηi ζi

)

Q
T2g

ξi
QT2g

ηi
= −

√
2
[

Q
T2g

ξi
QT2g

ηi

]

(S6)

Coefficients like V

(
T2g T2g T2g

ξi ζi ηi

)

in Eq. (S6) can be found in Ref. [2].

For operators such as H
(1)
αiβj

Qαi
Qβj

, we have similar situations. Eq. (S6) tells

that the corresponding matrix elements of operators Q
T2g
ηi Q

T2g

ζi
, Q

T2g

ξi
Q

T2g

ζi
and

Q
T2g

ξi
Q

T2g
ηi in the diabatic electronic basis ξ, η and ζ are proportional toMT2g

ξi
,

MT2g
ηi

and MT2g
ζi

, respectively. Using this knowledge and the electronic basis
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set of Eq. (S1) help to evaluate of the matrix elements as follows,

〈ψµ|Hαiβi
Qαi

Qβi
|ψν〉 = 〈T2g|Hαiβi

|T2g〉V
(
T2g T2g T2g

γi αi βi

)

Qαi
Qβi

= 〈T2g|Hαiβi
|T2g〉(−

1√
6
)

︸ ︷︷ ︸

Bi

Qαi
Qβi

= BiQαi
Qβi

(S7)

We have used the following relation in the evaluation of Eq. (S7) [2]:

V

(
T2g T2g T2g

γ α β

)

= − 1√
6
|ǫγαβ| (S8)

If we employ Eq. (S7), the matrix elements in the diabatic electronic basis
ψξ, ψη and ψζ read,

〈ψξ|H(1)
ξiηi

QξiQηi |ψη〉 = BiQξiQηi

〈ψξ|H(1)
ξiζi

QξiQζi |ψζ〉 = BiQξiQζi

〈ψη|H(1)
ηiζi

QηiQζi |ψζ〉 = BiQηiQζi (S9)

Using Eq. (S9) leads to the following results:

〈ψξ|Hξ1η2Qξ1Qη2 +Hξ2η1Qξ2Qη1 |ψη〉 = bT (Qξ1Qη2 +Qξ2Qη1)

〈ψξ|Hξ1ζ2Qξ1Qζ2 +Hξ2ζ1Qξ2Qζ1|ψζ〉 = bT (Qξ1Qζ2 +Qξ2Qζ1)

〈ψη|Hη1ζ2Qη1Qζ2 +Hζ1η2Qζ1Qη2|ψζ〉 = bT (Qη1Qζ2 +Qζ1Qη2), (S10)

where coefficient bT is proportional to 〈T2g|Hαiβi
|T2g〉. Finally, we should

evaluate the corresponding matrix elements of the quadratic terms in Eq.(S2).

Strictly speaking, we are interested in terms such asH
(2)
αi Qαi

2 andH
(1)
αiαjQαi

Qαj
.

For the quadratic terms, we should find irreducible representations of Oh

point group of the operators H
(2)
αi and H

(1)
αiαj . Let consider the irreps Eg and

A1g and their components and use Eq. (S3). Thus, we have

M
Eg

θi
=

1√
6

[
2Qζi

2 −Qξi
2 −Qηi

2
]

MEg

ǫi
=

1√
2

[
Qξi

2 −Qηi
2
]

MA1g =
1√
3

[
Qξi

2 +Qηi
2 +Qζi

2
]

(S11)
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Solving Eq. (S11) in terms of M
Eg

θi
, M

Eg
ǫi and MA1g yields

Qξi
2 =

1√
3
MA1g − 1√

6
M

Eg

θi
+

1√
2
MEg

ǫi

Qηi
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1√
3
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6
M
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θi
− 1√

2
MEg

ǫi

Qζi
2 =

2√
6
M

Eg

θi
+

1√
3
MA1g. (S12)

We can repeat this calculation for term such as H
(1)
αiαj and summarize the

results as follows,

Qξ1Qξ2 =

√
3

6
MA1g −

√
6

12
M

Eg

θi
+

1

2
√
2
MEg

ǫi

Qη1Qη2 =

√
3

6
MA1g −

√
6

12
M

Eg

θi
− 1

2
√
2
MEg

ǫi

Qζ1Qζ2 =

√
3

6
MA1g +

√
6

6
M

Eg

θi
(S13)

where i can be chosen 1 or 2. Eqs. (S12) and (S13) indicate that the cor-

responding matrix elements of the operators H
(2)
αi Qαi

2 and H
(1)
αiαjQαi

Qαj
are

proportional to M
Eg

θi
,M

Eg
ǫi and MA1g. Thus, non-zero matrix elements of the

quadratic terms of Eq. (S2) reads

〈ψξ|H(2)
ξi

Qξi
2 +H(2)

ηi
Qηi

2 +H
(2)
ζi
Qζi

2|ψξ〉 = Ai(2Qξi
2 −Qηi

2 −Qζi
2) +

ωTi

2
(Qξi

2 +Qηi
2 +Qζi

2)

〈ψη|H(2)
ξi

Qξi
2 +H(2)

ηi
Qηi

2 +H
(2)
ζi
Qζi

2|ψη〉 = Ai(2Qηi
2 −Qξi

2 −Qζi
2) +

ωTi

2
(Qξi

2 +Qηi
2 +Qζi

2)

〈ψζ |H(2)
ξi

Qξi
2 +H(2)

ηi
Qηi

2 +H
(2)
ζi

Qζi
2|ψζ〉 = Ai(2Qζi

2 −Qξi
2 −Q2

ηi
) +

ωTi

2
(Qξi

2 +Qηi
2 +Qζi

2)

(S14a)

〈ψξ|H(1)
ξ1ξ2

Qξ1Qξ2 +H(1)
η1η2

Qη1Qη2 +H
(1)
ζ1ζ2

Qζ1Qζ2|ψξ〉 = aT1 (Qξ1Qξ2 +Qη1Qη2 +Qζ1Qζ2)+

+ aT2 (2Qξ1Qξ2 −Qη1Qη2 −Qζ1Qζ2)

〈ψη|H(1)
ξ1ξ2

Qξ1Qξ2 +H(1)
η1η2

Qη1Qη2 +H
(1)
ζ1ζ2

Qζ1Qζ2|ψη〉 = aT1 (Qξ1Qξ2 +Qη1Qη2 +Qζ1Qζ2)+

+ aT2 (2Qη1Qη2 −Qξ1Qξ2 −Qζ1Qζ2)

〈ψζ |H(1)
ξ1ξ2

Qξ1Qξ2 +H(1)
η1η2

Qη1Qη2 +H
(1)
ζ1ζ2

Qζ1Qζ2|ψζ〉 = aT1 (Qξ1Qξ2 +Qη1Qη2 +Qζ1Qζ2)+

+ aT2 (2Qζ1Qζ2 −Qξ1Qξ2 −Qη1Qη2)
(S14b)
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Here, coefficients Ai are proportional to 〈T2g|H(2)
Ωi
|T2g〉. Note that coefficients

aTi ∝ 〈T2g|H(1)
ΩiΩj

|T2g〉 where Ωi ∈ {ξi, ηi, ζi} and Ωj ∈ {ξj, ηj, ζj} with i, j =

1, 2. We used following relations [2]

V

(
Eg T2g T2g

θ ξ ξ

)

= V

(
Eg T2g T2g

θ η η

)

= −1

2
V

(
Eg T2g T2g

θ ζ ζ

)

=
1

2
√
3

V

(
A1g b b
i β γ

)

= λ(b)−1/2δβγ (S15)

where λ(b) is the dimension of irreducible representation b and δ refers to
the Kronecker delta.

So far, we discussed how to calculate the matrix elements for the the
T2g ⊗ (t2g + t2g) part of the JT Hamiltonian; Eq. (S4) refers to the matrix
elements for linear JT Hamiltonian, Eqs. (S9), (S10) and (S14b) refer to the
matrix elements of the bilinear terms. Finally, Eq. (S14a) are the matrix
elements for the quadratic terms of the JT Hamiltonian. If one follows the
same computational method for the T2g ⊗ 2eg part of JT Hamiltonian, the
corresponding matrix Hamiltonians for this part JT Hamiltonian will be ob-
tained. For this part of JT Hamiltonian, we did not present the details of
calculations and restrict ourselves to the final results for matrix elements. In
this way, the electrostatic Hamiltonian Hes can be obtained by the aforemen-
tioned matrix elements. The final form of Hes was written down in Appendix
A.

S2 Potential energy surfaces
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Figure S1: Adiabatic PESs of the 2T2g electronic state of W(CO)+.
6 the both

components of egi modes and ξi components of t2gi modes. The computed
DFT data and the corresponding fitted lines are represented by circles and
solid lines, respectively.
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