Electronic Supplemental Information

Distant ultrafast energy-transfer in a trimetallic {Ru-Ru-Cr} complex facilitated by hole delocalization

Alejandro Cadranel, Jaired Tate, Paola S. Oviedo, Shiori Yamazaki, José H. Hodak, Luis M. Baraldo , and Valeria D. Kleiman

Figure S1: ¹H NMR spectrum of **2** in acetone- d_6 . Signals are assigned as described in the

Table S1. Selected distances and angles of the crystallographic structures of 1, 2, and 3.Data for 1 is taken from reference 1

1	2	3	1	2	3	
Distances / Å			Angles / °			
Ru _{th} -N _{tnv}			N-Ru _{tb} -N _{tnv}			
1.966(2)	1.951(8)	1.958(8)	70.22(10)	70.0(4)	70.0(4)	
2.060(2)	2.082(9)	2.075(10)	79.23(10)	79.0(4)	78.8(4) 70.5(4)	
2.078(2)	2.087(8)	2.094(10)	79.33(9)	/9.4(3)	/9.5(4)	
	Ru _{tb} -N _{bnv}			N-Ru _{tb} -N _{bpy}		
2.049(2)	2.093(9)	2.078(8)	70.52(0)	77.1(4)	79.4(4)	
2.076(2)	2.122(10)	2.086(9)	78.52(8)	//.1(4)	/8.4(4)	
	Ru _{py} -N _{py}					
-	2.085(11)	2.076(10)				
-	2.098(10)	2.077(10)				
-	2.102(12)	2.100(9)				
-	2.112(13)	2.112(9)				
	Ru _{tb} -C _{bridge}		R	u _{tb} -C-N _{brid}	ge	
_	$\frac{\mathbf{Ru_{tb}}-\mathbf{C_{bridge}}}{1.970(12)}$	2.007(12)	- R	u _{tb} -C-N _{brid} 176.9(9)	ge 174.3(11)	
-		2.007(12)	- - C	u _{tb} -C-N _{brid} 176.9(9) -N _{bridge} -Ru	ge 174.3(11) py	
-	Ru _{tb} -C _{bridge} 1.970(12) C-N _{bridge} 1.163(14)	2.007(12)	R - C -	u _{tb} -C-N _{brid} 176.9(9) -N _{bridge} -Ru 175.2(9)	ge 174.3(11) py 176.6(10)	
	Ru _{tb} -C _{bridge} 1.970(12) C-N _{bridge} 1.163(14) N _{bridge} -Ru _{py}	2.007(12)	R 	u _{tb} -C-N _{brid} 176.9(9) -N _{bridge} -Ru 175.2(9) _{ridge} -Ru-N _b	ge 174.3(11) py 176.6(10) ridge	
- - -	Ru _{tb} -C _{bridge} 1.970(12) C-N _{bridge} 1.163(14) N _{bridge} -Ru _{py} 2.028(10)	2.007(12) 1.123(13) 2.030(8)	R 	u _{tb} -C-N _{brid} 176.9(9) -N _{bridge} -Ru 175.2(9) _{ridge} -Ru-N _{br}	ge 174.3(11) py 176.6(10) ridge 176.9(4)	
- - -	$\begin{array}{c} {\bf Ru_{tb}-C_{bridge}} \\ \hline 1.970(12) \\ \hline {\bf C-N_{bridge}} \\ \hline 1.163(14) \\ \hline {\bf N_{bridge}-Ru_{py}} \\ \hline 2.028(10) \\ \hline {\bf Ru_{tb}-Ru_{py}} \end{array}$	2.007(12) 1.123(13) 2.030(8)	R 	u _{tb} -C-N _{brid} 176.9(9) -N _{bridge} -Ru 175.2(9) -idge-Ru-N _{br} - u _{tb} -N-C _{brid}	ge 174.3(11) py 176.6(10) ridge 176.9(4)	
- - - -	Ru _{tb} -C _{bridge} 1.970(12) C-N _{bridge} 1.163(14) N _{bridge} -Ru _{py} 2.028(10) Ru _{tb} -Ru _{py} 5.155	2.007(12) 1.123(13) 2.030(8) 5.148	R - - - - - - - R 170.1(2)	u _{tb} -C-N _{brid} 176.9(9) -N _{bridge} -Ru 175.2(9) 	ge 174.3(11) py 176.6(10) ridge 176.9(4) ge 167.8(11)	
- - - -	Ru _{tb} -C _{bridge} 1.970(12) C-N _{bridge} 1.163(14) N _{bridge} -Ru _{py} 2.028(10) Ru _{tb} -Ru _{py} 5.155 Ru-N _{bridge}	2.007(12) 1.123(13) 2.030(8) 5.148	R 	u _{tb} -C-N _{brid} 176.9(9) -N _{bridge} -Ru 175.2(9) ridge-Ru-N _{br} - .u _{tb} -N-C _{brid} - N-C _{bridge} -C	ge 174.3(11) py 176.6(10) ridge 176.9(4) ge 167.8(11) r	
	Ru _{tb} -C _{bridge} 1.970(12) C-N _{bridge} 1.163(14) N _{bridge} -Ru _{py} 2.028(10) Ru _{tb} -Ru _{py} 5.155 Ru-N _{bridge}	2.007(12) 1.123(13) 2.030(8) 5.148 2.020(9)	R 	u _{tb} -C-N _{brid} 176.9(9) -N _{bridge} -Ru 175.2(9) ridge-Ru-N _{br} - - u _{tb} -N-C _{bridg} -C - N-C _{bridge} -C	ge 174.3(11) py 176.6(10) ridge 176.9(4) ge 167.8(11) r 174.8(11)	
	Ru _{tb} -C _{bridge} 1.970(12) C-N _{bridge} 1.163(14) N _{bridge} -Ru _{py} 2.028(10) Ru _{tb} -Ru _{py} 5.155 Ru-N _{bridge} - N-C _{bridge}	2.007(12) 1.123(13) 2.030(8) 5.148 2.020(9)	R 	u _{tb} -C-N _{brid} 176.9(9) -N _{bridge} -Ru 175.2(9) 	ge 174.3(11) py 176.6(10) ridge 176.9(4) ge 167.8(11) r 174.8(11) r	
	Ru _{tb} -C _{bridge} 1.970(12) C-N _{bridge} 1.163(14) N _{bridge} -Ru _{py} 2.028(10) Ru _{tb} -Ru _{py} 5.155 Ru-N _{bridge} - N-C _{bridge}	2.007(12) 1.123(13) 2.030(8) 5.148 2.020(9) 1.177(15)	R - С - Nы - П 170.1(2) 173.8(3) R	u _{tb} -C-N _{brid} 176.9(9) -N _{bridge} -Ru 175.2(9) 	ge 174.3(11) py 176.6(10) ridge 176.9(4) ge 167.8(11) r 174.8(11) Cr 164.8	
- - - 2.037(2) 1.144(3)	Rutb-Cbridge 1.970(12) C-Nbridge 1.163(14) Nbridge-Rupy 2.028(10) Rutb-Rupy 5.155 Ru-Nbridge - N-Cbridge - Rutb-Cr	2.007(12) 1.123(13) 2.030(8) 5.148 2.020(9) 1.177(15)	R - C - Nbn - R 170.1(2) 173.8(3) R -	u _{tb} -C-N _{brid} 176.9(9) -N _{bridge} -Ru 175.2(9) 	ge 174.3(11) py 176.6(10) ridge 176.9(4) ge 167.8(11) r 174.8(11) Cr 164.8	

Table S2. Crystallographic data of **2** and **3**. CCDC 1505901 and 1023002 contains the supplementary crystallographic data for **2** and **3** respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Empirical Formula	C ₄₇ H ₄₃ Cl F ₁₂ N ₁₀ O P ₂ Ru ₂	C ₅₄ H ₄₅ Cr N ₁₆ O ₈ Ru ₂ S
Formula weight	1291.44	1332.26
<i>T</i> (K)	298 (2)	298 (2)
Crystal system	Monoclinic	Monoclinic
Space Group	$P2_1/c$	P2 ₁
<i>a</i> (Å)	13.779(3)	12.3182(17)
<i>b</i> (Å)	18.119(4)	22.004(2)
<i>c</i> (Å)	22.414(4)	13.2118(17)
β (°)	92.599(15)	109.093(14)
$V(\text{\AA}^3)$	5590(2)	3384.0(6)
Ζ	4	2
$D_{\text{calc}} (\text{mg/m}^3)$	1.534	1.307
Absorption coefficient (mm ⁻¹)	0.729	0.686
<i>F</i> (000)	2584	1346
Crystal size (mm)	0.06 x 0.18 x 0.48	0.03 x 0.40 x 0.45
Crystal color/shape	dark red/ plate	red/ plate
Radiation, graphite monochr.	MoKα, λ= 0.71069 Å	MoK α , $\lambda = 0.71069$ Å
θ Range data collection (°)	3.58-29.11	3.62-27.00
Index ranges	$-12 \le h \le 17$	$-14 \le h \le 15$
	$-22 \le k \le 22$	$-28 \le k \le 24$
	$-28 \le l \le 28$	$-16 \le l \le 16$
Reflections collected/unique	27324/11547 (Rint= 0.1715)	18321/11793 (Rint= 0.0949)
Observed reflections [I>2 σ (I)]	5155	8209
Completeness (%)	0.996	0.80
Maximum / minimum transmission	1.000 / 0.45450	1.000 / 0.72899
Refinement method	full-matrix least-squares on F ²	full-matrix least-squares on F ²
Weights, w	$1/[\sigma^{2}(F_{o}^{2})+(0.1669P)^{2}+0.0000P]$	$1/[\sigma^{2}(F_{o}^{2})+(0.1273P)^{2}+0.0000P]$
	where $P=(Fo^2+2F_c^2)/3$	where $P=(Fo^2+2F_c^2)/3$
Data/restraints/parameters	11547/8/676	11793/1/742
Goodness-of-fit (GOF) on F ²	1.017	1.059
Final R-index [I>2 σ (I)]/ all data	0.1127/0.2005	0.0874/ 0.1142
wR index [I>2σ(I)] /all data	0.2734/0.3624	0.2135/0.2583
Largest peak and hole (e A ⁻³)	1.503 and -0.843	2.154 and -0.936

Comn	Solvent	$E_{1/2} (\Delta E_{\rm p})/{\rm V} ({\rm mV})$				
Comp.		Ru _{pp} (III/II)	Ru _{py} (III/II)	tpy(0/-)	bpy(0/-)	Cr(III/II)
1	ACN	1.10 (190)	-	-1.28 (120)	-1.60 (130)	-1.83 ^a
2	ACN	1.60 (80)	0.73 (80)	-1.17 (120)	-1.54 (200)	-
3	DMSO/H ₂ O	1.64 (nd)	1.05 (nd)	-1.13 (nd)	-1.49 (nd)	nd

Table S3 - Electrochemical data for complexes **1**, **2** and **3**. a) Irreversible, cathodic peak. Data for **1** is taken from ref.¹

Table S4: Assignment of IR absorption bands.

Complex	$v_{\rm CN} / {\rm cm}^{-1}$	Assignment
1	2119	terminal
2	2096	bridge
	2127	terminal
3	2120(sh)	bridge
	2104	bridge

Table S5 - UV-vis

		UV-Vis abs.		
Comp.	Solvent	$\lambda_{\rm MLCT}$ / nm(ϵ / 10 ³ M ⁻¹ cm ⁻¹)		
		$\pi^*(py) \leftarrow d\pi(Ru)$	$\pi^*(pp) \leftarrow d\pi(Ru)$	
1 ¹	DMSO	-	353 (5.5) (sh)	
			478 (8.9)	
2	DMSO	380 (19.1)	440 (10.3) (sh)	
3	DMSO	368 (20.0)	450 (7.0)	

Figure S4: Broadband Transient absorption spectra of compounds 2 (top) and 3 (bottom) in DMSO upon excitation at 400 nm leading to $\pi^*(py) \leftarrow t_{2g}(Ru)$ absorption. The spectra shown correspond to negative times (—), 1 ps (—), 5 -for 2- and 14 ps -for 3- (—), 25 -for 2- and 50 ps -for 3- (—), and 240 -for 2- and 300 ps -for 3- (—). The gap (380- 420 nm) is from the removal of pump scatter.

Figure S5: Spectral evolution and difference spectra during $\{Ru^{II}(py)_4\} \rightarrow \{Ru^{III}(py)_4\}$ oxidation process (initial: solid black curve, final: dashed red curve, intermediate: grey curves) of complexes 2 (left) and 3 (right) in DMSO (0.1 M [TBA]PF₆).

Figure S6: Spectral evolution and difference spectra during the tpy \rightarrow tpy⁻ reduction process (initial: solid black curve, final: dashed blue curve, intermediate: grey curves) of complexes of complexes 2 (left) and 3 (right) in DMSO (0.1 M [TBA]PF₆).

Figure S7: Sum of the oxidative and reductive difference spectra of complexes 2 and 3 in DMSO. Red and blue signals represent, respectively, the positive and negative expected signals in TA spectroscopy.

REFERENCES

1. Cadranel, A.; Albores, P.; Yamazaki, S.; Kleiman, V. D.; Baraldo, L. M., Efficient energy transfer via the cyanide bridge in dinuclear complexes containing Ru(II) polypyridine moieties. *Dalton Transactions* **2012**, *41* (17), 5343-5350.