Supporting Information

Low intensity, continuous wave photodoping of ZnO quantum dots. Photon energy and particle size effects

Matías E. Aguirre,^a S. Municoy,^b M. A. Grela^{a*} and A. J. Colussi.^{c*}

^a Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR)-Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, (7600) Mar del Plata, Prov. de Buenos Aires, Argentina.

^b Departamento de Micro y Nanotecnología, GAIANN -Centro Atómico Constituyentes. Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 - (1650) - San Martín - Prov. de Buenos Aires, Argentina.

^c Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, California 91125, United States.

Supporting Information

	Description	Page
S-1	Capping action of ethylene glycol on ZnO quantum dots	3
S-2	Size distribution	4
S-3	Spectrophotometric determination of MV ²⁺ photoreduction rates	5
S-4	Effective mass model	6

S-1 Capping action of ethylene glycol on ZnO quantum dots

Figure S1: Comparison between the room temperature evolution of the UV absorption spectra of ZnO QDs synthesized at $T_R = 0$ °C, after a 1:20 dilution in ethanol (top) or ethylene glycol (bottom).

S-2 Size distribution

The mean size of the particles and its distribution was obtained using the procedure developed by Pesika.¹

For dilute concentrations, the absorbance, A, of a sol at any wavelength is related to the total volume of particles with radius greater or equal to the size corresponding to the absorption onset. Thus, for spherical particles

$$A(r) \propto \int_{r}^{\infty} \frac{4}{3} \pi r^{3} n_{P}(r) dr$$
 (E1)

where $n_P(r)$ is the particle size distribution. It follows from eq. (1), that the particle size distribution is related to the local slope of the absorption spectrum:

$$n_{P}(r) \propto -\frac{dA/dr}{4/3\pi r^{3}} = n_{P}^{*}(r)$$
 (E2)

Using the above expression, we obtained the size distribution for each sample. For all the samples the distributions could be fitted to a Gaussian function, as shown in Figure S2 for sample B.

Sample	T_R (°C)	<i><r></r></i> (nm)	σ(nm)
A	0	1.70	0.06
В	25	2.10	0.11
С	65	2.65	0.16

Table S2: Mean particle size and dispersion obtained from the fit of the distribution to a Gaussian function

Figure S2: Particle size distribution obtained from the absorbance spectra of the ZnO nanoparticles synthesized at 25 °C (sample B) after ethylene glycol capping.

S-3 Spectrophotometric determination of MV²⁺ photoreduction rates

Typical spectrophotometric determination of MV²⁺ photoreduction rates.

Figure S3: Time evolution of the UV-Vis absorption spectra obtained during the MV^{2+} anaerobic photoreduction in the presence of EG-capped ZnO QDs (Sample A). Irradiation wavelength 303 ± 5 nm. Inset [MV⁺⁺] as a function of irradiation time. The photoreduction rate can be readily obtained from the slope.

S-4 Effective mass model

Neglecting the polarization terms, the use of standard models under the Brus effective mass approximation^{2,3} makes possible to correlate the position of the conduction, $E^{BC}(r)$, and valence band, $E^{BV}(r)$, under confinement according to:⁴

$$E^{BC}(r) \cong E^{BC}(\infty) + \frac{h^2}{8r^2m_e^*} - 0.9\frac{e^2}{4\pi\epsilon_0\epsilon_r r}$$
 (E3)

$$E^{BV}(r) \cong E^{BV}(\infty) + \frac{h^2}{8r^2m_h^*} - 0.9\frac{e^2}{4\pi\epsilon_0\epsilon_r r}$$
(E4)

$$E_{g}(R) = E^{BC}(R) - E^{BV}(R) = E_{g}(\infty) + \frac{h^{2}}{8r^{2}} \left(\frac{1}{m_{e}^{*}} + \frac{1}{m_{h}^{*}}\right) - 1.8 \frac{e^{2}}{4\pi\varepsilon_{0}\varepsilon_{r}r}$$
(E5)

In the above equation m_e^* , m_h^* are the effective mass of the electron (0.28m_e), and the hole (0.59m_e), respectively, m_e the electron mass, r the radius of the particle, ε the dielectric constant of ZnO, and ε_0 the permittivity of free space.^{5, 6}

References

¹ Pesika, N. S.; Stebe, K. J.; Searson, P. C. Relationship between Absorbance Spectra and Particle Size Distributions for Quantum-Sized Nanocrystals. *J. Phys. Chem. B* **2003**, *107*, 10412-10415.

² Brus, L., Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory. *J. Phys. Chem.* **1986**, *90*, 2555-2560.

³ Jacobsson, T. J.; Edvinsson, T., Absorption and Fluorescence Spectroscopy of Growing ZnO Quantum Dots: Size and Band Gap Correlation and Evidence of Mobile Trap States. *Inorg. Chem.* **2011**, *50*, 9578-9586.

⁴ Zhang, L.; Yin, L.; Wang, C.; lun, N.; Qi, Y.; Xiang, D. Origin of Visible
Photoluminescence of ZnO Quantum Dots: Defect-Dependent and Size-Dependent. J.
Phys. Chem. C 2010, 114, 9651-9658.

⁵ Jacobsson, T. J.; Edvinsson, T. Photoelectrochemical Determination of the Absolute Band Edge Positions as a Function of Particle Size for ZnO Quantum Dots. *J. Phys. Chem. C* **2012**, *116*, 15692-15701.

⁶ Stroyuk, O. L.; Dzhagan, V. M.; Shvalagin, V. V.; Kuchmiy, S. Y., Size-Dependent Optical Properties of Colloidal ZnO Nanoparticles Charged by Photoexcitation. *J. Phys. Chem. C* 2010, *114*, 220-225.