
1. Supplementary Materials

The following sections contain the information and data deemed supplementary to the main text.

1A. Force Field Selection. The selection of the molecular force field is one of the most important 

pieces of any molecular simulation, and as such, it is critical to determine that the force field is 

able to reproduce certain key aspects of the physics in question. Cheong and Boon investigated 

the validity of using Charmm27, general AMBER, OPLS-AA/L, and Gromacs53a6 force fields 

for -glycine crystal growth simulations1. The use of five different charge sets (CNDO, LCAU, 

DNP, DZP, 6-31 G*) was also investigated. Finally, the SPC, SPC/E, and TIP3P water models 

were investigated. Cheong and Boon conclude that the general Amber force field (GAFF), 

coupled with CNDO charges, is the optimal force field for the study of -glycine crystal growth, 𝛼

as it was able to reproduce solution properties and the heat of solution well. Of the force field and 

charge sets questioned, the GAFF/CNDO combination was the only force field/charge 

combination that predicted a positive enthalpy of solution, meaning if any of the other force 

field/charge combinations were employed, crystallization would be an endothermic process, and 

would not take place. This is reflected in the work of Banerjee and Briesen who performed MD 

simulation of the (110) face of -glycine using the Gromos53a6 force field in SPC water2. Even 𝛼

at very high supersaturations, crystal dissolution was observed. This reflects the degree of peril 

molecular modelers undertake when performing nucleation simulations for the purpose of 

determining either crystal growth kinetics, or nucleation kinetics and solubility, as there is a large 

degree of variation in the predicted solubility between force field sets. We elected to employ the 

GAFF force field with CNDO charges for glycine, the SPC/E water model for water, as this was 

the only force field/charge combination tested that yielded a positive enthalpy of solution, and the 

possibility of crystal growth.  Thus, the simulations performed in this work were done with no 

knowledge apriori of the solubility of either polymorph predicted by this force field. Only the 
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knowledge that crystal growth would take place for -glycine, reflected in the positive heat of 𝛼

solution for -glycine predicted by Cheong and Boon was present. 

1B. MD Computational Details. To minimize finite size effects, such as cluster-cluster 

interactions between periodic images, and fluid phase enrichment or depletion due to solid 

dissolution or growth, large scale MD was employed with systems of ~100K atoms and box 

lengths of ~10 nm. To create an initial configuration of molecules for fluid equilibration, 2700 

glycine molecules were solvated with SPC/E water using the gromacs/5.03 solvate command at a 

concentration of 0.34 g/ml. The equilibrated fluid was then prepared by first performing MD 

equilibration in the NVT ensemble for 6 ns, and then equilibrating the fluid in the NPT ensemble 

for an additional 6 ns at 380 K.  The final equilibrated concentration of the system 0.36 g /ml. A 

single -, -, or -glycine spherical nanonanocrystal, with varying radius, was embedded in the 𝛼 𝛽 𝛾

equilibrated fluid using the gromacs/5.0 solvate command. The energy of the system was then 

minimized in gromacs/5.0, using steepest descent minimization, with an energy minimization 

tolerance of 100.0 kJ/mol/nm. 

All subsequent MD simulations were performed using an MD code consisting of LAMMPS4 and 

NAMD5 subroutines. Specifically, the integrator, thermostat, barostat, and real space force 

routines were taken from LAMMPS, and the PME solver was taken from NAMD. However, the 

parallelization was altered in that single MD trajectories are restricted to CPU sockets, using MPI, 

and are parallelized over the socket cores, and an Intel® Xeon Phi™ coprocessor, using OpenMP6. 

This allowed us to perform all MD trajectories simultaneously in an embarrassingly parallel 

manner. Furthermore, parallelizing over Intel® Xeon Phi™ coprocessors greatly reduced the 

number of CPU cores necessary to perform simulations. A full account of the MD optimizations 
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and parallelization schemes performed, along with a link to the full source code, can be found in 

the literature6.

Independent MD trajectories were launched by generating randomly initialized velocities 

according to a Maxwell distribution. Short-range non-bonded forces were truncated at 1.2 nm. 

Reciprocal space electrostatic forces were computed using a particle mesh Ewald (PME) solver 

with a 1.0e-6-error tolerance. 100 grid points were used in each direction for the PME solver. The 

equations of motion were solved using a velocity Verlet algorithm with a 3.0 fs timestep. The 

temperature was controlled using a Langevin thermostat with a relaxation time of 2000 fs.  The 

isotropic Berendsen barostat was used with a 1000 fs relaxation time and a set point of 1 atm. The 

shake algorithm was employed to constrain the motion of all bonds containing hydrogen. A shake 

tolerance of 1.0e-4 was employed for all simulations, and a maximum number of 25 shake 

iterations were allowed. Periodic boundary conditions were employed in all directions. 

1C. Number of Particles in the Cluster. Solid and liquid particles were differentiated based off 

the local density of a molecule7–9. Glycine, a small amino acid, has a sufficiently high packing 

density (~1.61g/cm3) to differentiate between liquid and solid molecules without reference to 

orientation ordering. In this work, molecules were considered solid if it possessed 11 or more 

neighbors in a 0.6 nm radius sphere7. That distance roughly corresponds to the first minimum in 

the glycine-glycine radial distribution function7. This number of neighbors corresponds to the tail 

end of the bulk glycine density distribution. Surface molecules were included in the clustering 

algorithm by counting a molecule as solid if it had a neighbor who met the density criterion, but 

did not meet the density criterion itself. 

1D. Temperature Screening Computational Methodology. To perform temperature screenings, 

ten MD trajectories were launched from each of the initial polymorph specific nanocrystal seeds, 
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obtained from the Cambridge Structural Database10 for up to 9 ns. All ten trajectories were then 

averaged to yield the average nucleus size drift data. Trajectories were launched at many 

temperatures until average drift was approximately zero. This required determining the melting 

temperature to within 1.25 K in some instances. Below the melting temperature estimate, clusters 

grew on average, and above the melting temperature, clusters dissolved on average. If different 

temperatures produced drift data that showed initial growth, followed by no growth or dissolution 

on average, the temperature that produced the least initial growth was selected as the melting 

temperature, as the critical size estimate obtained using this method is closest to the initial 

embedded cluster size. The y intercept, obtained from the linear fit to the averaged drift data at 

the critical temperature, was used to estimate the critical size. The interface equilibration was not 

used for the linear fit critical size analysis.

1E. MSD analysis and Parameter Estimation. For model MSD analysis, 10 clusters at the 

critical size were selected from the swarm of trajectories generated at the critical temperature. 20 

trajectories were then launched from each cluster, for a total of 200 trajectories. Each trajectory 

was initiated by selecting momenta randomly from a Maxwell Boltzmann distribution. 

Trajectories were allowed to equilibrate for 750 ps after velocity initialization, and then MSD 

data was recorded.

In order to estimate the D, , and  parameters from the MSD data, a least-squares error  𝜔2 ∆𝜇

function was optimized using a Nelder-Meade downhill simplex method 11 implemented in 

MATLAB’s fminsearch function. Because parameter estimates varied depending on the extent of 

the simulation, parameter estimates were tracked from 0 ns to the final simulation time, Tfinal, to 

determine when the parameters had converged with respect to simulation length for 1.05 ns. 

Parameters were averaged over this window. This resulted in parameters were estimated over 
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values of Tfinal=9.0 ns to Tfinal=10.05 ns for -glycine, and Tfinal= 3.9 ns to Tfinal=4.95 ns for -

glycine. The converged parameters for - are plotted in Supplementary figure 1, and the 𝛼

converged parameters for - are plotted in Supplementary figure 2.𝛽

To perform Einstein MSD analysis, where the classical Einstein relationship is used to estimate 

the diffusivity of particles, 5 clusters at the critical size were selected from the swarm of 

trajectories at the critical temperature. 20 trajectories were then launched from each cluster for a 

total of 100 trajectories. Each trajectory was launched by selecting momenta randomly from a 

Maxwell Boltzmann distribution. Trajectories were allowed to equilibrate for 750 ps after 

velocity initialization, and then MSD data was recorded. Einstein MSD simulations were 

conducted for 600 ps. A linear fit to the data was then used to calculate the diffusivity, as required 

by equation (6). The linear fit data for Einstein diffusivity calculation is shown in Supplementary 

figure 3 and 4.
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Supplementary Figure 1: The model MSD parameters are plotted again total simulation time 

(ns) for the case of -glycine. In figure a,  (kcal/mol) is plotted against time (ns). In figure b,  𝛼 ∆𝜇 𝐷

(fs-1) is plotted against time (ns). In figure c,  is plotted against time (ns).𝜔2
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Supplementary Figure 2:  The model MSD parameters are plotted again total simulation time 

(ns) for the case of -glycine. In figure a,  (kcal/mol) is plotted against time (ns). In figure b,  𝛽 ∆𝜇 𝐷

(fs-1) is plotted against time (ns). In figure c,  is plotted against time (ns).𝜔2

7



Supplementary figure 3. -glycine MSD data for Einstein diffusivity coefficient determination 𝛼

for the initially 1.5nm particle (a), 2.0nm particle (b), 2.15nm particle (c), and 2.70nm particle 

(d), at their respective critical temperatures.
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Supplementary figure 4. -glycine MSD data for Einstein diffusivity coefficient determination  𝛽

for the initially 1.5nm particle (a), 2.0nm particle (b), 2.15nm particle (c), and 2.70nm particle 

(d), at their respective critical temperatures.
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