Electronic Supplementary Information for

Water-Gas-Shift Reaction on Reduced Gold-Substituted Ce_{1-x}O₂(111) Surfaces: the Role of Au Charges

Ming-Wen Chang and Wen-Shyan Sheu*

Department of Chemistry, Fu-Jen Catholic University, Xinzhuang, New Taipei City 24205, Taiwan, R. O. C.

*Corresponding author. Tel.: +886 2 29053724; Fax: +886 2 29023209. E-mail: chem1013@mails.fju.edu.tw (W.-S. Sheu).

0	$\Delta E_{ m rxn}$ /eV			
Oxygen vacancies	PW91	^a HSE06		
(V ₀ 1)-	1.63	1.50		
(V ₀ 1, V ₀ 2)-	0.66	0.69		
(V ₀ 1, V ₀ 2, V ₀ 3)-	0.53	0.58		
(V ₀ 1, V ₀ 2, V ₀ 4)-	-0.51	-0.62		

Table S1. Comparison between the results obtained by the PW91 and HSE06 exchange-correlation functionals for the reaction of $H_2O^V + Au \rightarrow OH^V + H^{Au}$ on various reduced $Au@V_{Ce}$ surfaces with a $p(3 \times 3)$ supercell.

^{*a*} Single point calculations were carried using a $(1 \times 1 \times 1)$ k-point mesh on the geometries predicted by the PW91 functional.

Table S2. Comparison of various results obtained by $(2 \times 2 \times 1)$ and $(4 \times 4 \times 1)$ k-point meshes. The calculations were carried out by the PW91 functional on various reduced Au@V_{Ce} surfaces with a $p(3 \times 3)$ supercell without the zero-point energy correction. q[Au]: the Bader charge on Au; E_f^{ν} : the formation energy of oxygen vacancies; $E_{ads}(H_2O)$: the adsorption energy of a water molecule.

Oxygen vacancies –	q[Au] / e		E_f^V /eV		$E_{ads}(H_2O)/eV$	
	2×2×1	4x4x1	2x2x1	4x4x1	2x2x1	4x4x1
(V ₀ 1)-	1.12	1.19	-0.03	-0.03	-0.81	-0.79
(V ₀ 1, V ₀ 2)-	0.40	0.41	1.21	1.21	-0.94	-0.94
(V_01, V_02, V_03) -	0.33	0.33	2.10	2.12	-0.83	-0.85
(V ₀ 1, V ₀ 2, V ₀ 4)-	-0.59	-0.59	3.64	3.64	-0.93	-0.93

Table S3. The imaginary Frequency (IMF) of the transition state for each step of the proposed WGS reactionmechanism on the Au@V_{Ce} surfaces with various oxygen vacancy configurations

Elementary Step	Oxygen Vacancies	IMF /cm ⁻¹
	(V ₀ 1)-	242 <i>i</i>
$H_2O^V \to OH^V + H^{Au}$	(V ₀ 1, V ₀ 2)-	269 <i>i</i>
	(V ₀ 1, V ₀ 2, V ₀ 3)-	578 <i>i</i>
	(V ₀ 1, V ₀ 2, V ₀ 4)-	479 <i>i</i>
$CO_{(g)} + OH^V \rightarrow cis-OCOH^*$	(V ₀ 1, V ₀ 2)-	288 <i>i</i>
	(V_01, V_02, V_03) -	145 <i>i</i>
	(V_01, V_02, V_04) -	132 <i>i</i>
	(V ₀ 1, V ₀ 2)-	693 <i>i</i>
cis -OCOH* + H ^{Au} \rightarrow CO ₂ * + H ₂ *	(V_01, V_02, V_03) -	753 <i>i</i>
	(V_01, V_02, V_04) -	425 <i>i</i>
	(V_01, V_02, V_03) (V ₀ 1, V ₀ 2, V ₀ 4)-	425 <i>i</i>

CO oxidation (oxygen vacancy creation)

Figure S1. Structures and energies without the zero-point energy correction for CO molecules reacting with surface oxygens on (a) the unreduced-, (b) the (V_01)- and (c) the (V_01 , V_02)-Au@ V_{Ce} surfaces. Ce, O, Au, and C atoms are shown by green, red, orange and brown spheres, respectively. The (V_01 , V_02 , V_04)-Au@ V_{Ce} surface is created by migration of the O4 oxygen atom of the (V_01 , V_02 , V_03)-Au@ V_{Ce} surface to the V_03 vacancy with surface relaxation. The migration reaction is 1.54 eV.