Electronic Supplementary Information

Designing Hierarchical Hollow Nanostructures of Cu₂MoS₄ for

Improved Hydrogen Evolution Reaction

Ke Zhang,^a Yongli Zheng,^b Yunxiang Lin,^a Changda Wang,^a Hengjie Liu,^a Daobin Liu,^a Chuanqiang Wu,^a Shuangming Chen,^a Yanxia Chen,^{*b} and Li Song^{*a}

Preparation of Cu₂O nanocrystals

The synthesis of Cu₂O nanocrystals was similar to the previous reports with minor modifications.¹ Typically, 0.342 g CuCl₂•H₂O and 6.666 g poly (vinyl pyrrolidone) (PVP) were dissolved in 100 mL deionized water, then NaOH aqueous solution (2.0 mol•L–1, 10.0 mL) were added to the solution. After 30 mins' stirring, ascorbic acid aqueous solution (0.6 mol•L⁻¹, 10.0 mL) were added with an intensive magnetic stirring for 1 h. Then orange liquid was obtained. The product was collected by centrifugation and subsequently washed several times by deionized water and absolute ethanol. Finally dried for several hours. Cu₂O nanocrystals with different morphologies and sizes were obtained in different conditions. The corresponding parameters are listed in SI Table 1.

Morphology	PVP	Reaction temperature/ °C	Dropping speed	Size/nm
Nanosphere	Yes	20	quick	60~80
Nanosphere	Yes	20	slow	200~300
Octahedron	Yes	40	slow	500~600
Cube	No	40	slow	400~500

SI Table 1. The reaction parameters for different Cu₂O nanocrytals.

Yes: PVP was added in the reaction system;

No: PVP was not added.

Fig. S1. SEM and TEM images of Cu_2O crystals with different morphologies and sizes. A and B are images of sphere-like Cu_2O nanocrystals with size about 60~80 nm, while C and D are images of Cu_2O spheres with size range from 200~300 nm. E shows truncated-octahedral Cu_2O crystals with size about 500~600 nm and F shows truncated-cubic Cu_2O crystals with size about 400~500 nm.

Preparation of Cu₂MoS₄ nanosheets and nanoparticles

The synthesis of Cu_2MoS_4 nanosheets is described in our recent work (Small. 2014, 10, 4637.). When the solvothermal reaction is carried out at 160 °C for 12 h, Cu_2MoS_4 nanoparticles with size about 40~60 nm are obtained (AIP Advances, 2015, 5, 077130).

Fig. S2. SEM and TEM images of Cu_2MoS_4 at different morphologies. A and B are Cu_2MoS_4 nanosheets, while C and D are Cu_2MoS_4 nanoparticles.

EDX spectrum of Cu₂MoS₄ hollow nanoflowers

Fig. S3. EDX spectrum of Cu_2MoS_4 hollow nanoflowers.

Fig. S4. durability test of nanoflower (A), nanoparticle (B) and nanosheet (C).

References

 D. F. Zhang, H. Zhang, L. Guo, K. Zheng, X. D. Han and Z. Zhang, J. Mater. Chem. A 2009, 19, 5220-5225.