Electronic supplementary information

Three dimensional metal-organic framework derived porous CoP₃

concave polyhedrons as superior bifunctional electrocatalysts for the

evolution of hydrogen and oxygen

Tianli Wu, ^a Mingyu Pi, ^a Xiaodeng Wang, ^a Dingke Zhang^b and Shijian Chen ^{a,*} ^a School of Physics, Chongqing University, Chongqing, 401331, China ^b College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, China *Corresponding author: Dr. Shijian Chen, E-mail: <u>sjchen@cqu.edu.cn</u>, Tel: +86-2365678362

Fig. S1 Crystal structure of CoP₃. The cobalt and phosphorus atoms are represented by blue and red, respectively.

Fig. S2 Low- and high- magnification SEM images of CoP₃ NPs.

Fig. S3 SAED pattern of CoP₃ CPs.

Fig. S4 EDX spectrum of CoP₃ CPs.

Fig. S5 (a) Nitrogen adsorption/desorption isotherm and (b) the BJH pore-size distribution curve of CoP₃ NPs and CoP₃ CPs.

Fig. S6 Calculated exchange current density of the CoP₃ CPs and CoP₃

NPs by applying extrapolation method to the Tafel plot.

Catalyst	Onset η (mV)	Current density (j, mA cm ⁻²)	η at the corresponding j (mV)	Exchange current density (mA cm ⁻²)	Ref.
FeP nanosheets	100	10	240	-	Chem. Commun., 2013, 49, 6656
FeP NWs/Ti	38	10	55	0.42	Angew. Chem. Int. Ed., 2014, 53, 12855
FeP NWs	-	10	96	0.17	Chem. Commun., 2016, 52, 2819.
FeP NPs	38	10	112	-	<i>Nanoscale</i> , 2015, 7, 4400
FeP NAs	-	10	85	-	J. Mater. Chem. A, 2014, 2, 17263
FeP ₂ /C	-	5	500	1.75*10 ⁻ 3	J. Mater. Chem. A, 2015, 3, 499
Ni ₂ P NPs	-	20	130	2.7 *10 ⁻³	J. Am. Chem. Soc., 2013, 135, 9267
Ni ₂ P/graph ene	37	10	102	0.049	J. Power Sources, 2015, 297, 45
Ni ₂ P/CNs	40	10	92	-	<i>J. Power Sources</i> , 2015, 285, 169
NiP ₂ /CC	-	10	116	0.26	<i>Nanoscale</i> , 2014, 6, 13440
Se doped NiP ₂	-	10	84	-	ACS Catal., 2015, 5, 6355
Cu ₃ P NWs	62	10	143	0.18	Angew. Chem. Int. Ed., 2014, 53, 9577
MoP Bulk	50	30	180	0.034	<i>Energy Environ. Sci.</i> , 2014, 7, 2624
MoP NPs	40	10	125	0.086	<i>Adv. Mater.</i> , 2014, 26, 5702
MoP ₂ NPs/Mo	-	10	143	0.06	Nanoscale, 2016, 8, 8500
MoP ₂ nanosheets	-	10	58	-	J. Mater. Chem. A, 2016, 4, 7169
WP	50	10	120	-	Chem. Commun., 2014, 50, 11026

CPs/CFP with other TMPs HER electrocatalysts.

Table S1. Comparison of HER performance in acid media for CoP_3

a-WP ₂	54	10	161	0.017	ACS Catal., 2015, 5, 145
β-WP ₂	56	10	148	0.013	J. Power Sources, 2015, 278, 540
Co2P	-	10	95	-	<i>Chem. Mater.</i> , 2015, 27, 3769
CoP/CC	38	10	67	0.288	J. Am. Chem. Soc., 2014, 136, 7587
CoP NPs	-	20	85	-	Angew. Chem. Int. Ed., 2014, 53, 5427
CoP/CNs	40	10	122	0.13	Angew. Chem. Int. Ed., 2014, 53, 6710
CoP ₃ CPs	30	10	78	0.209	This work
		50	127		

NPs (Nanoparticles); CNs (Carbon Nanotubes); CC (Carbon Cloth); NWs (Nanowires); NAs (Nanoneedle Arrays); CPs (Concave Polyhedrons)

Table S2. Comparison of HER performance in neutral media for CoP_3

Catalyst	Current density (j, mA cm ⁻²)	Potential at the corresponding <i>j</i> (mV)	Ref.
Mo ₂ B	1	250	Angew. Chem. Int. Ed., 2012, 51, 12703
Mo ₂ C	1	200	Angew. Chem. Int. Ed., 2012, 51, 12703
H2-CoCat/FTO	2	385	Nat. Mater., 2012, 11, 802
Co-S/FTO	2	83	J. Am. Chem. Soc., 2013, 135, 17699
CuMoS ₄	2	210	<i>Energy Environ. Sci.</i> , 2012, 5, 8912
WP	10	200	ACS Appl. Mater. Interfaces, 2014, 6, 218740
WP ₂	10	298	<i>J. Power Sources</i> , 2015, 278, 540
MoP ₂ NPs/Mo	10	211	<i>Nanoscale</i> , 2016, 8, 8500
MoP ₂ nanosheets	10	67	J. Mater. Chem. A, 2016, 4, 7169
CoP NWs	2	65	J. Am. Chem. Soc., 2014, 136, 7587
CoP ₃ CPs	10	179	This work

CPs/CFP with other HER electrocatalysts.

Table S3. Comparison of HER performance in alkaline media for

Catalyst	Current density (j, mA cm ⁻²)	Potential at the corresponding <i>j</i> (mV)	Ref.
Ni wire	10	350	ACS Catal., 2013, 3, 166
МоВ	10	225	Angew. Chem. Int. Ed, 2012, 51, 12703
NiP ₂	10	102	<i>Nanoscale</i> , 2014, 6, 13440
WP	10	250	ACS Appl. Mater. Interfaces, 2014, 6, 218740
WP ₂	10	225	<i>J. Power Sources</i> , 2014, 136, 7587
MoP ₂ nanosheets	10	85	J. Mater. Chem. A, 2016, 4, 7169
MoP ₂ NPs/Mo	10	194	<i>Nanoscale</i> , 2016, 8, 8500
CoP nanowires	10	209	J. Am. Chem. Soc., 2014, 136, 7587
CoP ₃ CPs	10	124	This work

CoP₃/CFP with other HER electrocatalysts.

Fig. S7 The amount of H_2 theoretically calculated (solid) and experimentally measured (red sphere) versus time for CoP₃ CPs at (a) pH 0 under an overpotential of 127 mV (50 mA cm⁻²) for 60 min, (b) pH 6.8 under overpotentials of 223 mV (20 mA cm⁻²) for 60 min. and (c) pH 14 under overpotentials of 173 mV (30 mA cm⁻²) for 60 min.

Fig. S8 (a) XRD patterns of CoP₃ CPs and (b), (c), (d) the XRD patterns of CoP₃ CPs/CFP electrode after 3000 cycles CV scanning at pH 0, pH 6.8, and pH 14, respectively.

Table S4. Comparison of OER performance in alkaline media for

Catalyst	Current density (j mA cm ⁻²)	Potential at the corresponding <i>j</i> (mV)	Ref
NiOOH/Ni ₅ P ₄	10	290	Angew. Chem. Int. Ed, 2015, 54, 12361
Ni-P/CF	10	325	<i>J. Power Sources</i> , 2015, 299, 342
Co-P film	10	345	Angew. Chem. Int. Ed, 2015, 54, 6251
CoP NPs	10	360	ACS Catal., 2015, 5, 4066
CoP nanorods	10	320	ACS Catal., 2015, 5, 6874
CoP hollow	10	427	ACS Appl. Mater. Interfaces, 2016, 8, 2158
CoP ₂ /RGO	10	300	J. Mater. Chem. A, 2016, 4, 4686
	10	343	
COP3 NAS/CFP	8P <u>30</u>	393	I his work

CoP₃/CFP with other OER electrocatalysts.

Fig. S9 The amount of O_2 theoretically calculated (solid) and experimentally measured (red sphere) versus time for the CoP₃ CPs at pH 14 under overpotentials of 420 mV (50 mA cm⁻²) for 60 min.

Fig. S10 (a) XRD patterns of CoP₃ CPs and (b) the XRD patterns of CoP₃

CPs/CFP electrode after 3000 cycles CV scanning at pH 14.