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Table S1. The site energies and exciton couplings for the 4-state model of PSII-RC. Unperturbed energies of the zero-phonon 
transitions for the three excited states and CT are shown together with couplings (all quantities are in cm−1). 

         PD1            PD2           ChlD1        PD2
+PD1



PD1 
PD2 
ChlD1 
PD2

+PD1


    15020            150             −42               75
        150        15020             −56             −75
        −42            −56         14780                 0
          75            −75                 0         14520 

Table S2. Energies and intensities of exciton-vibrational components of the absorption corresponding to the three different 
positions of the CT level (with unperturbed energies of other diabatic states). The values of the CT shift ECT and other 
parameters of the model are the same as in Figure 2. Only 7 lowest vibronic eigenstates (b=1-7) are shown. Their energies ω 
are counted from ZPL of ChlD1, intensities I are calculated as dipole strengths of the transitions to b-th level from the lowest 
vibrational sublevel of the ground (the only populated in the low-temperature limit). Participation of the four diabatic states 
(i.e. PD1, PD2, ChlD1, and PD2

+PD1
, respectively) in the vibronic eigenstates are shown with highlighting (by bold) of the 

biggest contributions to the localized and mixed states.     

ECT(cm−1)    b  ω(cm−1)  I(Debye2)       PD1       PD2        ChlD1     PD2
+PD1



     -30

  1 
  2 
  3
  4
  5
  6
  7

 -307.07      0.565      0.0151    0.0152    0.0000    0.9697
  -11.38     17.632      0.0009    0.0445    0.9222    0.0324
      7.35      2.576      0.1386    0.1053    0.0489    0.7072
    34.60      0.041      0.0190    0.0195    0.0042    0.9572
    35.63      0.023      0.0155    0.0155    0.0001    0.9689
    36.09      0.003      0.0152    0.0151    0.0003    0.9695
  144.19    13.566      0.3533    0.3434    0.0048    0.2984

    +40

  1
  2
  3
  4
  5
  6
  7

-239.52       0.804      0.0203    0.0206    0.0001    0.9591
  -10.73     15.974      0.0027    0.0277    0.9667    0.0029
    50.61      8.582      0.2503    0.2305    0.0088    0.5104
    98.38      0.026      0.0287    0.0292    0.0017    0.9403
  100.59      0.075      0.0203    0.0206    0.0001    0.9591
  100.61      0.001      0.0204    0.0204    0.0001    0.9591
  172.34      9.173      0.2357    0.2314    0.0040    0.5289

   +140

  1
  2
  3
  4
  5
  6
  7

 -144.89      1.530     0.0347    0.0356    0.0003    0.9294
   -10.55    15.394     0.0040    0.0235    0.9709    0.0015
    86.47    14.293     0.3838    0.3643    0.0067    0.2453
  189.24      0.114     0.0682    0.0697    0.0038    0.8583
  195.21      0.145     0.0348    0.0356    0.0002    0.9293
  195.25      0.002     0.0349    0.0353    0.0002    0.9295
  240.89      3.478     0.0927    0.0955    0.0050    0.8069
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Explicit expressions for the Redfield tensor

To describe the dynamics of one-exciton populations b1b2(T) we need the Redfield tensor Rb1b2,b3b4. In the 
Liouville space the populations are given by vector (T), whereas the one-exciton relaxation tensor is R, with 
=b1+(b2−1)Nb and =b3+(b4−1)Nb, where Nb is the vibronic cutoff, i.e. the number of one-exciton vibronic 
states included into the modelling of the dynamics. The R tensor can be expressed as a product BA of the 
tensors Bb2b4 and Ab1b3. In matrix notations:
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where I is a delta-operator, Cn is a fragment of the Ce corresponding to a fixed electronic site n (the sum of 
independent contributions from different sites appears since we use an uncorrelated fluctuation model). In terms 
like CnQnCn we assume a matrix multiply, B*J denotes an array multiply (product of the elements of the 
matrices),  stand for a Kronecker tensor product. Such a form is useful for numerical evaluation of the Redfield 
tensor. The dynamics of vibronic populations is then given by:   
  

                                                                                                                       (S2)


  Ri

where =b1b2=b1b2. The ground-state dynamics is purely vibrational and is given by populations c1c2(T) 
and the Redfield tensor Rc1c2,c3c4. In the Liouville space we have populations γ(T) and relaxation tensor Rγδ, with 
γ=c1+(c2−1)Nc and δ=c3+(c4−1)Nc, where Nc is vibrational cutoff for the ground state. In matrix notations:
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where C is the same as Cg.  The dynamics of vibrational populations is:   
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

  Ri


