Supplementary Information

Exciton-vibrational resonance and dynamics of charge separation in photosystem II reaction center

Vladimir I. Novoderezhkin, Elisabet Romero, and Rienk van Grondelle

Table S1. The site energies and exciton couplings for the 4-state model of PSII-RC. Unperturbed energies of the zero-phonon transitions for the three excited states and CT are shown together with couplings (all quantities are in cm^{-1}).

	P _{D1}	P _{D2}	Chl_{D1}	$P_{D2}^{+}P_{D1}^{-}$	
P _{D1}	15020	150	-42	75	
P _{D2}	150	15020	-56	-75	
Chl _{D1}	-42	-56	14780	0	
$P_{D2}^{+}P_{D1}^{-}$	75	-75	0	14520	

Table S2. Energies and intensities of exciton-vibrational components of the absorption corresponding to the three different positions of the CT level (with unperturbed energies of other diabatic states). The values of the CT shift E_{CT} and other parameters of the model are the same as in Figure 2. Only 7 lowest vibronic eigenstates (b=1-7) are shown. Their energies ω are counted from ZPL of Chl_{D1}, intensities I are calculated as dipole strengths of the transitions to b-th level from the lowest vibrational sublevel of the ground (the only populated in the low-temperature limit). Participation of the four diabatic states (i.e. P_{D1} , P_{D2} , Chl_{D1}, and $P_{D2}^+P_{D1}^-$, respectively) in the vibronic eigenstates are shown with highlighting (by bold) of the biggest contributions to the localized and mixed states.

$E_{CT}(cm^{-1})$	b	$\omega(\text{cm}^{-1})$	I(Debye ²)	P_{D1}	P _{D2}	Chl _{D1}	$P_{D2}^{+}P_{D1}^{-}$
-30	1	307.07	0 565	0.0151	0.0152	0.0000	0.0607
		-307.07	0.303	0.0131	0.0132	0.0000	0.9097
		-11.38	17.032	0.0009	0.0445	0.9222	0.0324
	3	7.35	2.576	0.1386	0.1053	0.0489	0.7072
	4	34.60	0.041	0.0190	0.0195	0.0042	0.9572
	5	35.63	0.023	0.0155	0.0155	0.0001	0.9689
	6	36.09	0.003	0.0152	0.0151	0.0003	0.9695
	7	144.19	13.566	0.3533	0.3434	0.0048	0.2984
+40	1	-239.52	0.804	0.0203	0.0206	0.0001	0.9591
	2	-10.73	15.974	0.0027	0.0277	0.9667	0.0029
	3	50.61	<u>8.582</u>	0.2503	0.2305	0.0088	0.5104
	4	98.38	0.026	0.0287	0.0292	0.0017	0.9403
	5	100.59	0.075	0.0203	0.0206	0.0001	0.9591
	6	100.61	0.001	0.0204	0.0204	0.0001	0.9591
	7	172.34	<u>9.173</u>	0.2357	0.2314	0.0040	0.5289
+140	1	-144.89	1.530	0.0347	0.0356	0.0003	0.9294
	2	-10.55	15.394	0.0040	0.0235	0.9709	0.0015
	3	86.47	14.293	0.3838	0.3643	0.0067	0.2453
	4	189.24	0.114	0.0682	0.0697	0.0038	0.8583
	5	195.21	0.145	0.0348	0.0356	0.0002	0.9293
	6	195.25	0.002	0.0349	0.0353	0.0002	0.9295
	7	240.89	3.478	0.0927	0.0955	0.0050	0.8069

Explicit expressions for the Redfield tensor

To describe the dynamics of one-exciton populations $\rho_{b1b2}(T)$ we need the Redfield tensor $R_{b1b2,b3b4}$. In the Liouville space the populations are given by vector $\rho_{\alpha}(T)$, whereas the one-exciton relaxation tensor is $R_{\alpha\beta}$, with α =b1+(b2-1)N_b and β =b3+(b4-1)N_b, where N_b is the vibronic cutoff, i.e. the number of one-exciton vibronic states included into the modelling of the dynamics. The $R_{\alpha\beta}$ tensor can be expressed as a product B \otimes A of the tensors B_{b2b4} and A_{b1b3}. In matrix notations:

$$\begin{split} R &= -\sum_{n,j,s} \overline{(\phi_{n}^{js})^{2}} (B_{n}^{js} \otimes A_{n}^{js} + A_{n}^{js} \otimes B_{n}^{js}) - \sum_{n} \overline{(\Phi_{n})^{2}} (B_{n}^{e} \otimes A_{n}^{e} + A_{n}^{e} \otimes B_{n}^{e}) + \sum_{n} (B_{n} \otimes I + I \otimes B_{n}) \\ B_{n}^{e} &= C_{n}^{+}C_{n}; \quad A_{n}^{e} = B_{n}^{e} * J; \quad C_{n} = \sum_{a,b} |a\rangle C_{na,b}^{e} \langle b| \\ B_{n}^{js} &= C_{n}^{+}Q_{n}^{js}C_{n}; \quad A_{n}^{js} = B_{n}^{js} * J; \quad Q_{n}^{js} = Q_{js} - \Delta_{n}^{js} \\ B_{n} &= \overline{(\Phi_{n})^{2}}C_{n}^{+}C_{n}(C_{n}^{+}C_{n} * J) + \sum_{js} \overline{(\phi_{n}^{js})^{2}}C_{n}^{+}Q_{n}^{js}C_{n}(C_{n}^{+}Q_{n}^{js}C_{n} * J) \end{split}$$
(S1)

where I is a delta-operator, C_n is a fragment of the C^e corresponding to a fixed electronic site n (the sum of independent contributions from different sites appears since we use an uncorrelated fluctuation model). In terms like $C_nQ_nC_n$ we assume a matrix multiply, B*J denotes an array multiply (product of the elements of the matrices), \otimes stand for a Kronecker tensor product. Such a form is useful for numerical evaluation of the Redfield tensor. The dynamics of vibronic populations is then given by:

$$\rho_{\alpha} = -i\omega_{\alpha}\rho_{\alpha} - \sum_{\alpha} R_{\alpha\beta}\rho_{\beta} \tag{S2}$$

where $\omega_{\alpha} = \omega_{b1b2} = \omega_{b1} - \omega_{b2}$. The ground-state dynamics is purely vibrational and is given by populations $\rho_{c1c2}(T)$ and the Redfield tensor $R_{c1c2,c3c4}$. In the Liouville space we have populations $\rho_{\gamma}(T)$ and relaxation tensor $R_{\gamma\delta}$, with $\gamma = c1 + (c2-1)N_c$ and $\delta = c3 + (c4-1)N_c$, where N_c is vibrational cutoff for the ground state. In matrix notations:

$$R = -\sum_{j,s} \overline{(\phi_g^{js})^2} (B_g^{js} \otimes A_g^{js} + A_g^{js} \otimes B_g^{js}) + (B_g \otimes I + I \otimes B_g)$$

$$B_g^{js} = C^+ Q_g^{js}C; \quad A_g^{js} = B_g^{js} * J; \quad Q_g^{js} = Q_{js} - \Delta_g^{js}; \quad B_g = \sum_{js} \overline{(\phi_g^{js})^2} C^+ Q_g^{js}C(C^+ Q_g^{js}C * J)$$
(S3)

where C is the same as C^g. The dynamics of vibrational populations is:

$$\rho_{\gamma} = -i\omega_{\gamma}\rho_{\gamma} - \sum_{\gamma} R_{\gamma\delta}\rho_{\delta}$$
(S4)