	Experimental			r -	Fheoretical		
Parameter	Neutral	Neutral	Ionic	2A"(5s) _{1/2}	3A'(5s) _{1/2}	3A" (5pa ₁) _{1/2}	5A' (5pe) _{1/2}
r-CBr	1.950	1.990	2.013	2.025	2.062	2.046	2.252
r-CC	1.518	1.516	1.534	1.491	1.504	1.516	1.490
r-CH(CH3)	1.093	1.097	1.09	1.09	1.12	1.09	1.10
r-CH(CH ₂ ,CH)	1.087	1.088	1.09	1.10	1.09	1.10	1.09
∠CCBr	111.0	111.6	103.3	117.7	112.1	111.2	103.9
\angle HCH (CH ₃)	108.9	108.4	107.8	107.9	107.8	105.9	104.3
\angle HCH (CH ₂)	109.9	109.7	114.2	108.1	113.5	106.5	113.6
∠HCBr	105.4	104.7	104.3	98.5	100.2	98.2	96.8

$Supplementary \ Table \ 1. \ Calculated \ and \ experimental \ bond \ lengths \ (\AA) \ and \ bond \ angles \ (^{\circ}) \ of \ ethylbrowide \ at \ the \ B3LYP/631+(2d,2p) \ level \ of \ theory$

Supplementary Table 2. Vibrational frequencies (in cm⁻¹) of ethyl bromide in a few excited states at the B3LYP/6-31+(2d,2p) level of theory

	$2A''(5s)_{1/2}$ $3A'(5s)_{1/2}$		5s) _{1/2}	3A"(5	pa1)1/2	5A'(5pe) _{1/2}		
Vibrational Mode	C ₂ H ₅ Br	C ₂ D ₅ Br	C ₂ H ₅ Br	C ₂ D ₅ Br	C ₂ H ₅ Br	C ₂ D ₅ Br	C ₂ H ₅ Br	C ₂ D ₅ Br
A'								
$v_1(CH_3 \text{ d-str})$	3095	2262	3089	2259	3088	2282	3031	2225
v_2 (CH ₂ s-str)	2918	2122	2993	2174	2980	2161	3006	2187
v_3 (CH ₃ s-str)	2763	2008	2795	2030	2903	2100	2906	2098
v_4 (CH ₃ d-deform)	1480	1183	1482	1132	1429	1105	1471	1153
v_5 (CH ₂ scis)	1395	1053	1390	1055	1394	1031	1418	1065
v_6 (CH ₃ s-deform)	1357	1028	1379	1032	1367	1018	1289	1028
v_7 (CH ₂ wag)	1234	934	1252	949	1213	941	1190	919
v_8 (CH ₃ rock; in-plane)	1109	887	1045	878	987	815	1036	838
v ₉ (CC str)	901	712	885	694	870	699	773	587
v_{10} (CBr str)	435	415	418	396	397	370	448	414
v_{11} (CCBr deform)	270	240	199	179	245	221	165	148
A"								
v_{12} (CH ₂ a-str)	3151	2337	3164	2365	3088	2232	3118	2324
v_{13} (CH ₃ d-str)	2913	2141	3126	2321	2900	2160	2916	2168
v_{14} (CH ₃ d-deform)	1416	1019	1414	1029	1415	1024	1227	900
v_{15} (CH ₂ twist)	1230	952	1244	977	1078	830	1115	859
v_{16} (CH ₃ rock; out of plane)	916	662	1155	835	871	626	781	562
v_{17} (CH ₂ rock)	482	362	806	587	607	457	716	527
v_{18} (Torsion)	213	160	254	184	230	167	232	166
ZPE (cm ⁻¹)	13,639	10,239	14,045	10,538	13,531	10,120	13,419	10,084

Supplementary Table 3. Vertical Excited state energies at the CAM-B3LYP/aug-cc-pVTZ level of theory#

Sym	VEE (eV)	f	Λ	Transition	Weight	Ass.	EXPT	0- C
³ A"	6.181	0	0.276	7a"-21a'	0.53			
³ A'	6.231	0	0.290	19a'-21a'	-0.52			
¹ A''	6.126	0.0004	0.277	7a''-21a'	0.53	V	~5.2 - 6.7	
¹ A'	6.177	0.0005	0.290	19a'-21a'	0.52			
³ A"	7.067	0	0.248	7a"-20a'	-0.77	5s-3/2	7.026	-0.063
³ A'	7.111	0	0.254	19a'-20a'	-0.75			
¹ A''	7.001	0.0433	0.249	7a''-20a'	0.76	5s-1/2	7.348	0.319
¹ A'	7.057	0.0562	0.255	19a'-20a'	-0.75			
³ A"	7.840	0	0.273	7a"-21a'	0.75			
³ A'	7.909	0	0.277	19a'-21a'	-0.72			
¹ A''	7.807	0.0063	0.238	7a''-21a'	0.66	V?		
¹ A'	7.866	0.0138	0.290	19a'-21a'	-0.75			

³ A'	7.845	0	0.179	7a"-8a"	0.88	5pe-3/2	7.969	0.111
³ A"	7.870	0	0.123	19a'-8a"	-0.93			
¹ A'	7.805	0.0175	0.167	7a''-8a''	-0.92	5pe-1/2	8.296	0.463
¹ A''	7.861	0.0001	0.158	19a'-8a''	0.82			
³ A"	8.052	0	0.279	7a"-23a'	-0.55	$4da_1 - 3/2$	8.727	0.651
3 . 1	0 101	0	0.200	/a"-22a'	0.52	$5pa_1 - 3/2$	7.903	-0.173
JA	8.101	0	0.289	19a-23a 10a' 22a'	-0.56			
1	8 022	0.0288	0 277	19a-22a 7a''_23a'	-0.53	1da1/2	9.035	0 992
A	0.022	0.0200	0.277	7a -23a 7a"_22a'	-0.33	4ua1-1/2 5na1/2	8 236	0.992
1 A'	8.064	0.0352	0.288	19a'-23a'	-0.54	Spa[-1/2	0.250	0.175
1	0.001	0.0002	0.200	19a'-22a'	0.52			
³ A'	8 685	0	0.158	7a"-9a"	-0.91	4 de - 3/2	8 793	0 102
³ A"	8.696	Ő	0.192	19a'-9a"	-0.71		0.770	0.102
¹ A'	8.652	0.0021	0.167	7a''-9a''	-0.88	4de-1/2	9.094	0.421
¹ A''	8.695	0.0116	0.177	19a'-9a''	-0.77			
³ A"	8.725	0	0.206	19a'-25a'	0.58	$6pa_1 - 3/2$	9.133	0.359
³ A'	8.823	0	0.293	19a'-25a'	0.66			
¹ A''	8.654	0.0001	0.222	7a''-25a'	0.67	6pa ₁ -1/2	9.465	0.747
¹ A'	8.783	0.0224	0.306	19a'-25a'	0.80			
³ A'	8.827	0	0.311	18a'-20a'	0.67			
¹ A'	8.771	0.0721	0.292	18a'-20a'	0.77	5s(18a')	9.281	0.510
³ A"	8.973	0	0.254	7a"-24a'	0.61	6s-3/2	8.908	-0.069
³ A'	8.982	0	0.263	19a'-24a'	0.72			
¹ A''	8.938	0.0135	0.254	7a''-24a'	0.53	6s-1/2	9.215	0.274
¹ A'	8.943	0.0223	0.268	19a'-24a'	-0.65	/-		
³ A"	9.022	0	0.26	7a"-26a'	-0.69	$5da_1 - 3/2$	9.708	0.651
³ A'	9.092	0	0.281	19a'-26a'	-0.67	51 1/0	0.405	0 200
	8.988	0.0001	0.259	/a''-26a' 10al 26al	-0.62	$5da_1 - 1/2$	9.405	0.399
•A•	9.024	0.0155	0.278	19a - 20a	0.05	(0.1(2	0.0(2
³ A''	9.140	0	0.18	19a - 10a "	0.95	6pe-3/2	9.163	-0.062
-A 1 A !!	9.510	0.0015	0.505	/a -10a	-0.62	6no 1/2	0.519	0 269
A 1 A '	9.104	0.0013	0.180	19a -10a 7a"_10a"	-0.94	ope-1/2	9.510	0.300
3	9.268	0.2300	0.255	6a"-20a'	0.02			
1 <u>A</u> "	9.208	0 0000	0.201	6a"-20a	0.70	58(69")	9 948	0 725
3Δ'	9.430	0.0000	0.315	18a'-20a	0.50	35(0a)	7.740	0.723
14'	9 364	0 1091	0.313	18a'-21a'	0.50	V9		
3 A "	9 532	0	0.252	7a"-28a'	0.64	$7na_{1}-3/2$	9 626	0.060
³ A'	9 601	0	0.232	19a'-28a'	0.61	/pu] 5/2	9.020	0.000
¹ A''	9.502	0.0131	0.252	7a''-28a'	0.63	$7 pa_1 - 1/2$	9.908	0.383
¹ A'	9.548	0.0279	0.282	19a'-28a'	-0.59	1 1		
³ A"	9.748	0	0.241	6a"-20a'	0.52			
				6a''-21a'	0.51			
¹ A''	9.709	0.0064	0.252	6a''-21a'	-0.57	V?		
				6a''-20a'	-0.53			
³ A'	9.756	0	0.349	18a'-22a'	0.69			
¹ A'	9.720	0.0275	0.346	18a'-22a'	-0.71	5pa1(18a')	10.236	0.516
³ A"	9.806	0	0.168	18a'-8a"	-0.86			
¹ A''	9.779	0.0168	0.160	18a'-8a''	-0.89	5pe(18a')	10.259	0.480
³ A"	9.830	0	0.226	7a"-27a'	-0.63	7s-3/2	9.465	-0.385
³ A'	9.869	0	0.277	19a'-27a'	-0.57			
¹ A''	9.805	0.0052	0.224	7a''-27a'	-0.62	7s-1/2	9.776	-0.041
	9.829	0.0197	0.285	19a'-27a'	0.53			
³ A'	9.972	0	0.355	18a'-23a'	-0.69			
'A'	9.934	0.0233	0.352	18a'-23a'	-0.68	$4da_1(18a')$	10.623	0.689
°А'	10.078	0	0.26	/a"-11a"	0.59	5de-3/2	9.435	-0.661
'A"	10.114	0	0.183	19a'-11a"	-0.74	51.1/2	0.53	0.244
¹ A' 1 A !!	10.040	0.0125	0.264	/a 11a	-0.51	5de-1/2	9.75	-0.544
•A."	10.107	0.0015	0.189	19a - 11a ···	0.69	0 - 2/2	0.74	0.201
3A'	10.106	0	0.223	/a"-30a'	0.68	8S-3/2	9.76	-0.391
-A 1 A ''	10.195	0 0194	0.287	19a-30a 7a"_30a'	-0.00 0.64	8c-1/7	10 064	_0 0/5
1 <u>A'</u>	10.073	0.0556	0.285	199'-309'	0.65	05-1/2	10.007	-0.043
³ A'	10 132	0.0000	0 278	7a"-12a"	-0.40			
4 1	10.154	v	0.4/0	/u =1∠u	0.70			

¹ A'	10.098	0.0181	0.275	7a''-12a''	0.46			
³ A"	10.246	0	0.226	7a"-29a'	-0.74	$6da_1 - 3/2$	9.73	-0.541
³ A'	10.295	0	0.273	19a'-29a'	-0.79			
¹ A''	10.226	0.0072	0.226	7a''-29a'	0.72	6da ₁ -1/2	10.04	-0.203
¹ A'	10.260	0.0070	0.273	19a'-29a'	0.79			
³ A"	10.314	0	0.199	19a'-12a"	0.67	7pe-3/2	9.654	-0.714
³ A'	10.422	0	0.231	7a"-12a"	0.67			
¹ A''	10.290	0.0020	0.206	19a'-12a''	-0.62	7pe-1/2	9.948	-0.380
¹ A'	10.365	0.1296	0.234	7a''-12a''	0.66			
³ A"	10.361	0	0.244	6a"-21a'	0.61			
¹ A''	10.311	0.0487	0.239	6a''-21a'	0.55	\mathbf{V}		
³ A'	10.497	0	0.224	6a"-8a"	-0.80			
¹ A'	10.443	0.0887	0.225	6a"-8a"	0.79	5pe(6a")	11.049	0.606
³ A"	10.582	0	0.237	6a"-22a'	0.67			
¹ A''	10.554	0.0013	0.236	6a''-22a'	0.66	5pa1(6a'')	10.993	0.439
³ A'	10.615	0	0.275	17a'-20a'	-0.73			
¹ A'	10.589	0.0023	0.276	17a'-20a'	-0.73	5s(17a')		
³ A"	10.647	0	0.136	18a'-9a"	-0.95			
¹ A''	10.629	0.0022	0.142	18a'-9a''	-0.93	4de(18a')		
³ A"	10.741	0	0.269	19a'-13a''	0.66			
				19a'-14a"	0.44			
¹ A''	10.692	0.0088	0.268	19a'-13a''	-0.64			
				19a'-14a''	-0.44			
³ A'	10.756	0	0.34	18a'-25a'	0.64			
				7a"-13a"	-0.39			
³ A'	10.822	0	0.302	19a'-31a'	-0.54			
				7a"-13a"	-0.42			
¹ A'	10.710	0.0218	0.336	7a''-13a''	0.51			
				18a'-32a'	-0.51			
¹ A'	10.773	0.0147	0.319	18a'-24a'	0.52			
				18a'-25a'	-0.49			
³ A"	10.867	0	0.233	7a"-31a'	-0.82	8pa1-3/2	9.828	-1.057
³ A'	10.903	0	0.284	19a'-31a'	0.65			
¹ A''	10.849	0.0052	0.233	7a''-31a'	-0.83	8pa1-1/2	10.134	-0.726
¹ A'	10.872	0.0630	0.272	19a'-31a'	0.73			
³ A'	11.048	0	0.318	18a'-26a'	0.6286			
¹ A'	11.003	0.0068	0.318	18a'-26a'	0.622	$5da_1(18a')$		
³ A'	11.167	0	0.293	19a'-32a'	0.678			
¹ A'	11.125	0.0142	0.294	19a'-32a'	0.6577			
³ A"	11.185	0	0.175	18a'-10a"	-0.757			
¹ A''	11.154	0.0013	0.18	18a'-10a''	-0.74	6pe(18a')		
³ A"	11.257	0	0.272	7a"-32a'	0.8675	$7da_1 - 3/2$	9.908	-1.328
¹ A''	11.214	0.0195	0.267	7a''-32a'	0.8461			
³ A'	11.251	0	0.287	19a'-32a'	-0.489	$7da_1 - 1/2$	10.215	-1.018
¹ A'	11.215	0.0995	0.286	19a'-32a'	-0.534			

***Singlet state energies are in bold type;** all energies in eV; Unassigned lines are either not observed in the present experiment or show too much orbital mixing to be unambiguously assigned. EXPT: present experimental study; VEE: vertical excited energy; *f*: oscillator strength; Λ: lambda diagnostic value; Ass: assignment; R: Rydberg; V: Valence

Supplementary Figure 1: Expanded view of the 74,000–86000 cm⁻¹ region

Supplementary Figure 2: Absorption spectra of C₂H₅Br and C₂D₅Br in the UV region

Appendix 1: Note on spectroscopic notations

We recapitulate here the various spectroscopic notations that have been used to describe the Rydberg spectra of alkyl bromides. The similarity in the structure and spectra of HBr, CH₃Br and CH₃CH₂Br leads one naturally to consider the C_{∞v} or C_{3V} limiting cases and then follow what happens when the symmetry is lowered to C_s . The other important consideration is the correlation of the relatively weaker spin orbit coupling in the neutral molecule with the strong spin orbit coupling seen in the cationic ground state. We also note that the concept of double groups has to be used in derivation of the possible Rydberg states in order to allow for the half integral values of spin^{1, 2}. In correlating the C_{3V} case with the linear limit $C_{\infty v}$, we note that a_1 and e symmetries correspond to σ and π respectively^{3, 4}. In the linear molecule limit, the first *ns* Rydberg excitation may be taken as $\pi^4 \rightarrow \pi^3 \sigma$, giving rise to four states, three of Π symmetry (dipole allowed) and one of Δ symmetry (dipole forbidden). In the C_{3V} limit, this correlates with three states of E symmetry and one each of A₁ and A₂ symmetry (jointly referred to as state 3). In the intermediate or strong spin-orbit coupling limit, only two of the four states, viz. 2 and 4 are strongly allowed^{2, 4}. Of these, the ${}^{3}\Pi_{1}$ correlates with the ${}^{2}E_{3/2}$ component of the cationic ground state while ${}^{1}\Pi_{1}$ correlates with the ${}^{2}E_{1/2}$ component. In the C_s case, strictly speaking all transitions are allowed, however transitions observed experimentally follow the C_{3V} case, thus validating the assumption that the additional methyl group has negligible influence on the Rydberg spectra of ethyl bromide. The expected states for *np* and *nd* Rydberg excitations can also be worked out in a similar way.

State	$C_{\infty v}{}^4$	C_{3V}^2	C _s ²	Ionic limit	Current designation
1	$^{3}\Pi_{2}(\Delta)$	E(2)	(A', A")	${}^{2}E_{3/2}$	
2	${}^{3}\Pi_{1}(\Pi)$	E(1)	(A', A")	${}^{2}E_{3/2}$	5s (² E _{3/2})
3*	$^{3}\Pi_{0\pm}(\Sigma^{+},\Sigma^{-})$	$A_1, A_2(0)$	(A', A")	${}^{2}E_{1/2}$	
4	$^{1}\Pi_{1}$	E(1)	(A', A")	${}^{2}E_{1/2}$	5s (² E _{1/2})

*These two states are very close in energy and have been designated jointly as state 3^{2,4}.

References

- 1. G. Herzberg, *Molecular Spectra and Molecular Structure Vol. III Electronic Spectra and Electronic Structure of Polyatomic Molecules*, D.VAN NOSTRAND COMPANY, INC., Princeton, New Jersey, 1966.
- 2. N. L. Baker and B. R. Russell, Journal of Molecular Spectroscopy, 1978, 69, 211-224.
- 3. R. S. Mulliken, *Physical Review*, 1942, 61, 277-283.

4. S. Felps, P. Hochmann, P. Brint and S. P. McGlynn, *Journal of Molecular Spectroscopy*, 1976, 59, 355-379.