Understanding room-temperature π -dimerisation of radical ions: Intramolecular π -[TTF]₂²⁺ in functionalised calix[4]arenes

Maria Fumanal,^{a,b} Marçal Capdevila-Cortada^{c,*} and Juan J. Novoa^{a,*}

(a) Departament de Química Física and IQTCUB, Universitat de Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain; (b) Current address: Laboratoire de chimie quantique, Institut de Chimie UMR7177 CNRS-Université de Strasbourg, 1 Rue Blaise Pascal BP 296/R8, F-67007 Strasbourg, France; (c) Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.

E-mail: mcapdevila@iciq.es; juan.novoa@ub.edu

Electronic Supporting Information

	non-dimerised	π -dimerised	
НОМО			
HOMO-1			

Figure S1. HOMO and HOMO-1 molecular orbitals of π -dimerised and non-dimerised [calix]⁰ obtained with M06-L/6-31G(d,p) using PCM for simulating the acetonitrile solvent.

	non-dimerised	π -dimerised
SOMO		
НОМО		

Figure S2. SOMO and HOMO molecular orbitals of π -dimerised and non-dimerised [calix]+ obtained with M06-L/6-31G(d,p) using PCM for simulating the acetonitrile solvent.

Figure S3. Optimum geometry of $[calix]^{2+}$ molecule in its conformation **C** non-dimerised form, obtained at the M06-L/6-31G(d,p) level, in PCM-acetonitrile. The hydrogen atoms are hidden for clarity.

Figure S4. Time evolution of the two r(C-C) distances between the central carbon atoms of the TTF units of the [calix]²⁺ (*top*) and the dihedral angle C-C-C-C defined by these central C atoms (*bottom*) along the AIMD simulations performed in implicit acetonitrile solution. The grey region denotes equilibration. The initial configuration prior equilibration was the π -dimerised [calix]²⁺ form.

Figure S5. Fragments considered to evaluate their contribution to the total potential energy curve of the $[calix]^{2+}$: the [calix]-base, the $[base-TTF]^{+}$ and the $[TTF]^{+}\cdots[TTF]^{+}$. The hydrogen atoms are hidden for clarity.

Table S1. Mulliken atomic charges of the two TTF fragments at the ground state of the different oxidation states of the π -dimerised and non-dimerised [calix]ⁿ⁺ (n = 0-2) obtained with M06-L/6-31G(d,p) using PCM for simulating the acetonitrile solvent.

	non-dimerised		π-dimerised	
	TTF1	TTF2	TTF1	TTF2
[calix] ⁰	0.00	0.01	-0.07	0.01
[calix]+	0.00	0.89	0.45	0.30
[calix] ²⁺	0.89	0.89	0.87	0.82

	π -[TTF] ₂ ²⁺	π -dimerised [calix] ²⁺
Density @ C_1 - C_1 bcp	$4.2 \cdot 10^{-3}$	$5.8 \cdot 10^{-3}$
Density $@$ S ₁ -S ₁ bcp	1.1 · 10-2	1.1 · 10 ⁻²
Density (a) S ₂ -S ₂ bcp	1.1 · 10-2	$1.3 \cdot 10^{-2}$
Density $@ C_2-C_2 bcp$	$6.2 \cdot 10^{-3}$	6.5 · 10 ⁻³
Density (a) C ₃ -C ₃ bcp	6.2 · 10 ⁻³	6.1 · 10 ⁻³
Density @ S ₃ -S ₃ bcp	1.1 · 10 ⁻²	9.4 · 10 ⁻³
Density $@$ S ₄ -S ₄ bcp	1.1 · 10 ⁻²	1.1 · 10-2
Density \widehat{a} C ₄ -C ₄ bcp	4.2 · 10 ⁻³	3.8 · 10 ⁻³

Table S2. Electron density (in atomic units) at the bond critical points depicted in Figure5 of the main text. The C_1 and C_4 are averaged values of the outer carbon atoms.