Supplementary Information

Mechanistic insights to CO₂ reduction on Cu/ Mo loaded two-

dimensional g-C₃N₄ (001)

Penghui Li,^{b,&} Fang Wang,^{b, &} Shiqian Wei,^b Xinyu Li ^b and Ying Zhou^{a,b*}

^{a)} State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China.

^{b)} The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China

^{&)} These authors contributed equally to this work and should be considered co-first authors

*To whom correspondence should be addressed

Email: yzhou44@swpu.edu.cn (Y. Zhou)

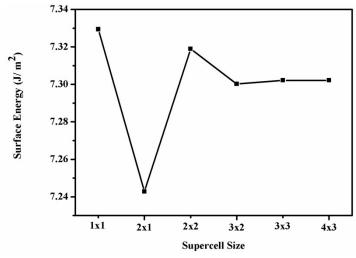
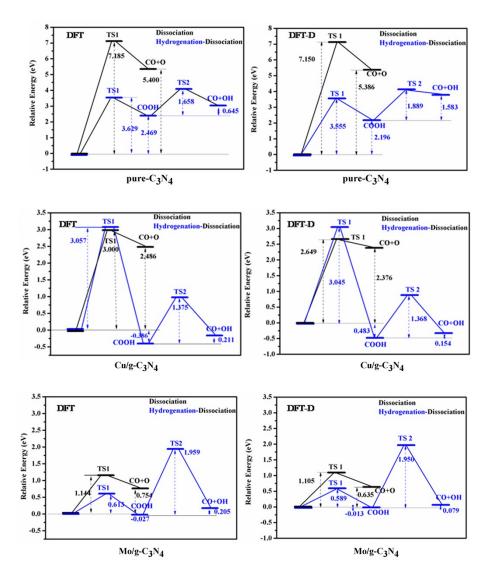



Fig. S1 Convergence tests of surface energies for pure- C_3N_4 (001) surface.

Fig. S2 Comparisons of two mechanisms of CO_2 activation on $g-C_3N_4$ (001), $Cu/g-C_3N_4$ (001) and $Mo/g-C_3N_4$ (001) with DFT and DFT-D method, respectively.