# ZnTa<sub>2</sub>O<sub>6</sub> photocatalyst synthesized via solid state reaction for conversion of CO<sub>2</sub> into CO in water

#### **Corresponding authors**

Prof. Kentaro Teramura and Prof. Tsunehiro Tanaka Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615–8510, Japan Tel: +81–75–383–2559 Fax: +81–75–383–2561 E–mail address: teramura@moleng.kyoto-u.ac.jp

## List of the authors

Shoji Iguchi<sup>a</sup>, Kentaro Teramura<sup>a,b\*</sup>, Saburo Hosokawa<sup>a,b</sup>, and Tsunehiro Tanaka<sup>a,b\*</sup>

## Affiliation and full postal address

- a. Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615–8510, Japan
- b. Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University,
  1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615–8245, Japan

#### Fabrication of film form ZnTa<sub>2</sub>O<sub>6</sub> for electrochemical measurement

The film form  $ZnTa_2O_6$  samples were prepared by an electrophoresis method. The photocatalyst powder was dispersed to an acetone solution containing iodine (I<sub>2</sub>) as an electrolyte, and 10 V of a direct current (DC) was applied to the suspension using a two-electrode electrochemical cell to deposit the photocatalyst on a glass substrate covered with fluorine-doped tin oxide (FTO) as a conductive layer. The prepared film sample, hereinafter called ZnTa<sub>2</sub>O<sub>6</sub>/FTO, was heated at 773 K for 2 h before use.

#### **Electrochemical measurement**

The photoelectrochemical measurement was performed in a three-electrode type cell;  $ZnTa_2O_6/FTO$ , Ag/AgCl electrode, Pt wire, and 0.1 M Na<sub>2</sub>SO<sub>4</sub> aq. were used as working electrode, reference electrode, counter electrode, and electrolyte solution, respectively. The ZnTa<sub>2</sub>O<sub>6</sub>/FTO electrode was irradiated with a 200 W Hg-Xe lamp (San-ei electric) through a quartz window under N<sub>2</sub> atmosphere without external bias, and the value of phorocurrent was recorded by using an electrochemical measurement system (HZ-5000, Hokuto Denko Corp.). The irradiated area (effective area) of ZnTa<sub>2</sub>O<sub>6</sub>/FTO was fixed at 1 cm × 3 cm (3 cm<sup>2</sup>) in the photoelectrochemical measurements in this study.

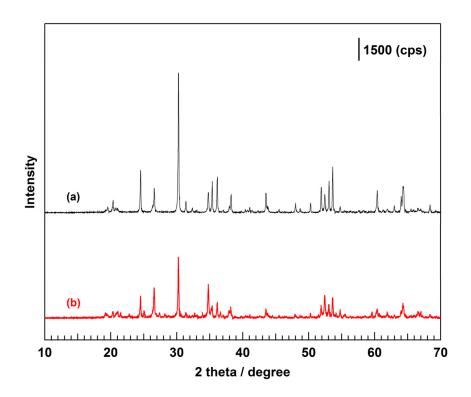
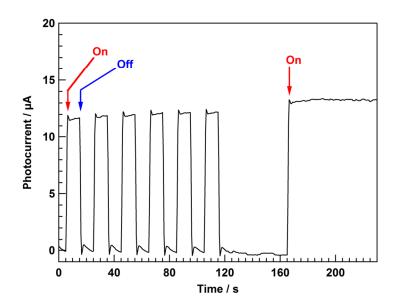
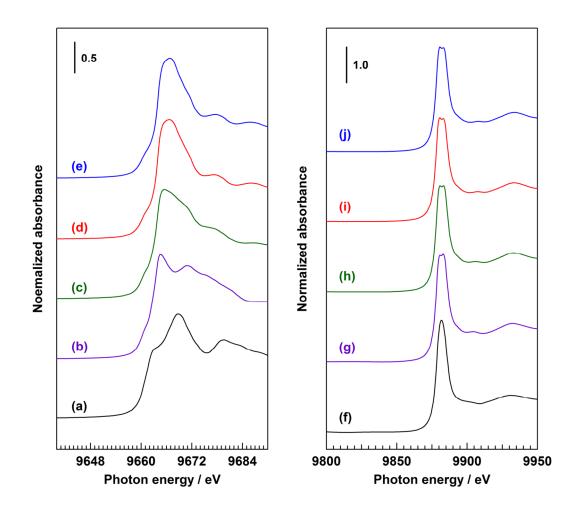





Figure S1 XRD patterns of (a) ZTO\_1273 and (b) ZTO\_PC.



**Figure S2** Photocurrent value of ZTO\_1373 photoelectrode measured by using a three electrode type photoelectrochemical cell without external bias. Turning on and off of photoirradiation was repeated every 10 s from 0 to 120 s. UV-29 long-pass filter was used from 120 to 170 s. Photoirradiation was kept on after 170 s.



**Figure S3** Normalized (a–e) Zn-K edge and (f–j) Ta-L<sub>III</sub> edge XANES spectra of (a, f) mixture of ZnO and Ta<sub>2</sub>O<sub>5</sub>, (b, g) ZTO\_1073, (c, h) ZTO\_1173, (d, i) ZTO\_1273, and (e, j) ZTO\_1373.

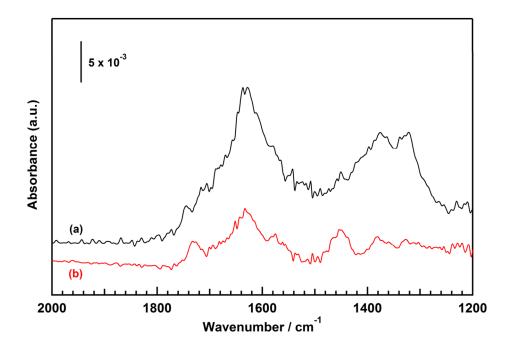



Figure S4 In-situ FT-IR spectra of (a) ZTO\_1173 and (b) ZTO\_1273.

Measurement mode: transmission, weight of palette: 100 mg, detector: MCT, resolution: 4 cm<sup>-1</sup>, accumulation: 128 scans, temperature: R.T., pretreatment: O<sub>2</sub> treatment at 673 K for 60 min and evacuation at 673 K for 15 min, background spectrum: after pretreatment at R.T. under evacuation for each sample, CO<sub>2</sub> introduction: 1.1 kPa.