Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supplementary Information for

Catalytic hydrotreatment of fast pyrolysis liquids in batch and continuous set-ups using a bimetallic Ni-Cu catalyst with a high metal content

Wang Yin¹, Arjan Kloekhorst¹, Robertus H. Venderbosch², Maria V. Bykova³, Sofia A. Khromova³, Vadim. A. Yakovlev³, Hero J. Heeres^{*1}

 ¹ Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
² Biomass Technology Group BV, Josink Esweg 34, 7545 PN Enschede, The Netherlands
³ Boreskov Institute of Catalysis, 5, pr. Akad. Lavrentieva, 630090 Novosibirsk, Russia

(*) corresponding author: h.j.heeres@rug.nl Tel.: +31 50 3634174

Content:

Tables: 2

Figures: 5

Entry	Catalyst Feed Reaction		Reaction	ction H ₂ Pressure Reaction time,			Product properties	Reference
			Temperature		LHSV			
1	Ru/C for stabilization	Pyrolysis oil from	170-250 °C for	13.8 MPa	0.19 h ⁻¹	Two-stage fixed	Product yield 0.35-0.45g/g dry feed,	1
	Sulfided Ni-Mo/C for	sawdust	stabilization			bed	oxygen content 0.2-0.3 wt.%	
	HDO		400 °C for HDO					
2	Sulfided Ni-Mo/ γ -Al ₂ O ₃	Pyrolysis oil from	150 °C for	6.9-16.9 MPa	1 h for	Semibatch	63-68 % carbon yield in organic phase,	2
		oak	stabilization		stabilization and	reactor	around 5 wt.% oxygen content	
			340-400 °C for HDO		1 h for HDO			
3	Sulfided Ni-Mo/ γ -Al ₂ O ₃	10 wt.% pyrolysis	280-350 °C	0.34-0.97 MPa	0.4-2 h ⁻¹	Fixed bed	TAN in products from 2.2 to 8.6 mg	3
		oil in 1-				reactor	KOH/g, acid conversion from 63 to 91%,	
		methylnaphthalene					O/C from 4.06 to 1.04, H/C from 1.17 to	
							1.26	
4	Sulfided Ni-Mo/ γ -Al ₂ O ₃	Pyrolysis oil from	270 °C	2.07 MPa	0.0011-0.0065	Packed bed	HDO up to 40%	4
		sawdust			m/s	microreactor		
5	Sulfided Ni-Mo/ γ -Al ₂ O ₃	Rapeseed pyrolysis	260-350 °C	3 MPa	2.0 h ⁻¹	Packed bed	Oxygen content from 8.12 to 2.82 wt.%	5, 6
		011				reactor		
6	Reduced Ni-Mo/ γ -Al ₂ O ₃	Pyrolysis oil from	200 °C	3 MPa	2 h	Batch autoclave	pH increased from 2.16 to 2.84,	7
		pine sawdust					hydrogen content increased from 6.61	
							to 6.93 wt.%	
7	Reduced Ni-Mo/CNT	Pyrolysis oil from	100-250 °C	5-6 MPa	2-10 h	Batch autoclave	pH from 2.92 to 3.68, hydrogen content	8
		pine sawdust					from8.40 to 11.26 wt.%	

8	Raney Ni	Pyrolysis oil from	250 °C for	8.5 MPa for	2-4 h for	Batch autoclave	Oxygen content 1.9 wt.%	9
		liquid phase	stabilization	stabilization and	stabilization and			
		pyrolysis	400 °C for HDO	15.0-17.0 MPa	2 h for HDO			
				for HDO				
9	Raney Ni	Pyrolysis oil in	200 °C	Formic acid as	5-8 h	Batch autoclave	Water content 17.7 wt.%, viscosity 4.16	10
		methanol and		hydrogen donor			mm ² /s, pH=4.35, heating value 22.06	
		formic acid		and the pressure			MJ/kg, organic yield 86.7 wt.%	
				around 8 MPa				
10	Ni/HZSM-5	Pyrolysis oil from sawdust	240 °C	4.0 MPa	3 h	Batch autoclave	Oxygen content 38.66 wt.%	11
11	Ni/HZSM-5(Ni content	Pyrolysis oil in	280 °C	1.5 MPa	5 h	Batch autoclave	acid, phenolics, esters, alcohols,	12
	20 wt.%), Ni/SiO ₂ -	ethanol					ketones, aldehydes detected	
	ZrO ₂ (Ni content from							
	10 to 25 wt.%)							
12	Ni/TiO ₂ -ZrO ₂	Pyrolysis oil in	300 °C	4.0 MPa	8 h	Batch autoclave	Upgraded oil: 19.3 wt.% oxygen	13
		decalin					content, pH=4.21, water content 1.5	
							wt.%, heating value 25.8 MJ/kg	
13	Ni/ZrO ₂	Bio-oil from	300 °C	5 MPa	4 h	Batch autoclave	Oxygen content of product	14
		hydrothermal					decreased from 26.79 to 0.75 wt.%	
		liquefaction of						
		cornstalks in						
		cyclohexane						
14	Ni-Co-Pd/γ-Al ₂ O ₃	Pyrolysis oil from	300 °C	2 MPa	3 h ⁻¹	Fixed bed	Oxygen content of product was 2.1	15
		Chlorella				reactor	wt.%, deoxygenation degree 80.5%	
							-	

15	Ni-Fe/γ-Al ₂ O ₃	Pyrolysis oil from	400 °C	Atmospheric	0.03 ml/min	Tubular quartz	pH=7.5, heating value 43.9 MJ/kg, H/C	16
		straw		pressure		reactor	ratio 2.15	
16	Ru/C for stabilization	Pyrolysis oil in	300 °C for	10 MPa for	3 h for	Batch reactor	Deoxygenation degree from 92-94%	17
	Ni-Fe/ γ -Al $_2O_3$ for HDO	organic solvents	stabilization and 400	stabilization and	stabilization and	for stabilization		
		(tetraline, decalin,	°C for HDO	13 MPa for HDO	20 ml/h for HDO	and fixed bed		
		diesel or				reactor for HDO		
		diesel/isopropanol)						
17	Ni-Cu/ZrO2 (Cu/Ni ratio	Pyrolysis oil from	350 °C	2 MPa	3.5 h ⁻¹	Tricked bed	Oxygen content decreased from 7.19 to	18
	from 0.14-1.00 w/w)	alge (Chlorella and				reactor	1.30 wt.% and from 5.81 to 1.63 wt.%,	
	with a fixed metal	Nanochloropsis					highest HDO efficiency of 82%	
	loading 22 wt.%	sp.)						
18	Ni-Cu on CeO ₂ -ZrO ₂ ,	Pyrolysis oil from	150 °C for	11.0 MPa	1 h for	Batch autoclave	Oxygen content of product	19
	ZrO_2 , TiO ₂ , Carbon from	pine wood	stabilization and 350		stabilization and		Ranging from 5.4 to 17.7 wt.%	
	rice husk, Sibunite, δ-		°C for HDO		3 h for HDO			
	Al ₂ O ₃							
19	Ni-Cu/δ-Al ₂ O ₃ (Ni	Pyrolysis oil from	150 °C for	10.0 MPa	1 h for	Batch autoclave	Oxygen content of products ranging	20
	content 20.8-5.92 wt.%	pine wood	stabilization and 350		stabilization and		from 12.2 to 17.1 wt.%	
	and Cu content 0-18.2		°C for HDO		3 h for HDO			
	wt.%)							

Chemical shift region (ppm)	Proton assignments	РL (%-Н)	80 °С (%-Н)	180 °С (%-Н)	250 °С (%-Н)	300 °С (%-Н)	350 °С (%-Н)
10.0-8.0	-CHO, -COOH, downfield ArH	1	1	0	0	0	0
8.0-6.8	ArH, HC=C (conjugated)	4	4	2	1	2	3
6.8-6.4	HC=C(nonconjugated)	3	4	4	4	5	4
6.4-4.2	-CH _n -O-, ArOH, HC=C (nonconjugated)	18	24	13	4	2	2
4.2-3.0	CH₃O-, -CH₂O-, -CHO-	28	23	27	29	16	7
3.0-2.2	CH ₃ (=O)-, CH ₃ -Ar, -CH ₂ Ar	12	14	12	11	16	17
2.2-1.6	-CH ₂ -, aliphatic OH	22	20	17	17	21	20
1.6-0.0	-CH ₃ , -CH ₂ -	12	10	25	34	38	47

Table S2 ¹H-NMR of pyrolysis liquids and upgraded oils after catalytic hydrotreatment using Ni-Cu catalyst in the batch set-up

Figure S1. Schematic overview of the continuous hydrotreatment set-up

Figure S2 GC x GC spectrum of pyrolysis liquids and upgraded oils obtained in the continuous setup using Ni-Cu catalyst (IS: internal standard, di-n-butyl ether)

Figure S3 Molecular weight distribution by GPC analysis for pyrolysis liquids and upgraded oils in the batch set-up

Figure S4 Flash point of the product oils obtained using Ni-Cu catalyst in the batch reactor and continuous set-up

The flash points for the product oils from the batch and continuous set-up were determined and the results are given in Figure S4. Clear flash points were not detected for the pyrolysis liquids feed and the product oils obtained at 180 °C from continuous set-up and for the product oils at 80-250 °C from batch reactor, presumably due to the large amount of water in these samples (22.6-15.9 wt.% for continuous reactor and 32.1-9.7 wt.% for the batch reactor). For the other products, a clear trend is visible; the flash point reduces dramatically when increasing the hydrotreatment temperature, especially for the product oils from continuous reactor. This indicates the presence of larger amounts of volatile compounds with a lower molecular weight by deoxygenation and hydrocracking reactions when increasing the hydrotreatment temperature. Compared to the products from continuous set-up, the product oils from batch setup have a slightly lower flash point, presumably due to the higher H/C ratio of the product oils as shown in Figure 2.

Figure S5 TG residue of pyrolysis liquids and product oils using Ni-Cu catalyst in the batch set-up

References for supplementary material

1 D. C. Elliott, T. R. Hart, G. G. Neuenschwander, L. J. Rotness, M. V. Olarte, A. H. Zacher and Y. Solantausta, *Energy Fuels*, 2012, **26**, 3891-3896.

2 R. J. French, J. Stunkel, S. Black, M. Myers, M. M. Yung and K. Iisa, *Energy Fuels*, 2014, 28, 3086-3095.

3 Y. Wang, H. Lin and Y. Zheng, Catalysis Science & Technology, 2014, 4, 109-119.

4 N. Joshi and A. Lawal, Chemical Engineering Science, 2012, 74, 1-8.

5 K. Pstrowska, J. Walendziewski, R. Łużny and M. Stolarski, Catalysis Today, 2014, 223, 54-65.

6 K. Pstrowska, J. Walendziewski and M. Stolarski, Fuel Process Technol, 2014, 128, 191-198.

7 Y. Xu, T. Wang, L. Ma, Q. Zhang and L. Wang, *Biomass Bioenergy*, 2009, **33**, 1030-1036.

8 M. Zhou, L. Tian, L. Niu, C. Li, G. Xiao and R. Xiao, Fuel Process Technol, 2014, 126, 12-18.

9 H. Pucher, N. Schwaiger, R. Feiner, L. Ellmaier, P. Pucher, B. S. Chernev and M. Siebenhofer, *Green Chem.*, 2015, **17**, 1291-1298.

10 W. Xiong, Y. Fu, F. Zeng and Q. Guo, *Fuel Process Technol*, 2011, **92**, 1599-1605.

11 X. Zhang, T. Wang, L. Ma, Q. Zhang and T. Jiang, *Bioresour. Technol.*, 2013, **127**, 306-311.

12 X. Zhang, L. Chen, W. Kong, T. Wang, Q. Zhang, J. Long, Y. Xu and L. Ma, Energy, 2015, 84, 83-90.

13 X. Zhang, J. Long, W. Kong, Q. Zhang, L. Chen, T. Wang, L. Ma and Y. Li, *Energy Fuels*, 2014, **28**, 2562-2570.

14 W. Shi, Y. Gao, S. Song and Y. Zhao, Ind Eng Chem Res, 2014, 53, 11557-11565.

15 W. ZHONG, Q. GUO, X. WANG and L. ZHANG, *Journal of Fuel Chemistry and Technology*, 2013, **41**, 571-578.

16 S. Leng, X. Wang, X. He, L. Liu, Y. Liu, X. Zhong, G. Zhuang and J. Wang, *Catalysis Communications*, 2013, **41**, 34-37.

17 X. Xu, C. Zhang, Y. Liu, Y. Zhai and R. Zhang, Chemosphere, 2013, 93, 652-660.

18 Q. Guo, M. Wu, K. Wang, L. Zhang and X. Xu, Ind Eng Chem Res, 2015, 54, 890-899.

19 A. R. Ardiyanti, S. Khromova, R.H. Venderbosch, V. Yakovlev, I. Melián-Cabrera and H.J. Heeres, *Applied Catalysis A: General*, 2012, **449**, 121-130.

20 A. R. Ardiyanti, S. Khromova, R. H. Venderbosch, V. Yakovlev and H. J. Heeres, *Applied Catalysis B: Environmental*, 2012, **117**, 105-117.