## **Electronic Supplementary Information**

## Highly selective oxidation of sulfides on a $CdS/C_3N_4$ catalyst with dioxygen under visible-light irradiation

Yong Xu,<sup>a</sup> Zi-Cheng Fu,<sup>a</sup> Shuang Cao,<sup>a</sup> Yong Chen<sup>a</sup> and Wen-Fu Fu<sup>\*a,b</sup>

<sup>a</sup>Key Laboratory of Photochemical Conversion and Optoelectronic Materials and HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P.R. China

E-mail: fuwf@mail.ipc.ac.cn

<sup>b</sup>College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, P.R. China



Fig. S1 XRD patterns and TEM images of (a) as-prepared  $C_3N_4$  and (b) after ultrasonic exfoliation, and (c) TEM images of CdS.



Fig. S2 SEM-energy dispersive X-ray (EDX) analysis in random areas of cdcn(30).



Fig. S3 XPS survey spectrum of cdcn(30).



Fig. S4 FTIR spectra of the as-prepared samples.

The interaction of CdS nanoparticles with  $C_3N_4$  was further studied by FTIR spectroscopy. Fig. S4 shows a comparison of  $C_3N_4$  and CdS/C<sub>3</sub>N<sub>4</sub> composites. The pure  $C_3N_4$  presents three characteristic absorption region at >3000 cm<sup>-1</sup>, 1200–1700 cm<sup>-1</sup>, and <1000 cm<sup>-1</sup>. The broad band between 3000 and 3400 cm<sup>-1</sup> in the spectra of  $C_3N_4$  corresponds to the stretching vibrations of terminal  $-NH_2$  or -NH- groups (3182 cm<sup>-1</sup>) at the defect sites of the aromatic ring. The characteristic peaks that appear at 1246, 1319, 1411, 1573 and 1635 cm<sup>-1</sup> can be assigned the typical stretching modes of CN heterocycles in  $C_3N_4$  occurs during the hybridization process. The representative breathing mode of the triazine units in  $C_3N_4$  can be observed at 813 cm<sup>-1</sup>. The characteristic bands of  $C_3N_4$  gradually increase with the increase of  $C_3N_4$  mass ratio in the composites. In the case of CdS, the broad band centered at 3430 cm<sup>-1</sup> is contributed to the surface adsorption of water molecules, which is gradually decrease with the increase of  $C_3N_4$ . The absorption peaks of CdS are not obvious in the CdS/C<sub>3</sub>N<sub>4</sub> composites, which could be due to their low intensity. The results of FTIR are well in accordance with XRD, SEM, TEM and XPS.



Fig. S5 Comparison of photoluminescence (PL) spectra of pure C<sub>3</sub>N<sub>4</sub> and cdcn samples.

It is clear that pure  $C_3N_4$  shows a strong and wide peak ranged from 380 to 600 nm in the PL spectrum with excited at 325 nm. The principle peak of  $C_3N_4$  around 470 nm is attributed to  $n-\pi^*$  electronic transition. The high PL intensity indicates that  $C_3N_4$  has the high optical recombination rate, which may deteriorate photodegradation efficiency. However, in the case of cdcn, the peak strength decreases gradually from cdcn(50) to cdcn(30), which can be ascribed to the effective separation of photoinduced charge carriers in the composite.



**Fig. S6** XRD patterns of as-prepared cdcn(30) and the sample after it was used in cycling photocatalytic experiments.



Fig. S7 i-E curves of cadmium ion standard solution measured by linear sweep voltammetry.



| Irradiation                                  | 1    | 2    | 2    | 1    | 5    |
|----------------------------------------------|------|------|------|------|------|
| time (h)                                     | 1    | 2    | 5    | 4    | 5    |
| Concentrations<br>of Cd <sup>2+</sup> (mg/L) | 28.6 | 31.2 | 35.1 | 36.0 | 38.3 |

Fig. S8 Cadmium ion concentration and peak current value of the corresponding regression equation and experimental results.

Reaction conditions: methyl p-methoxyphenyl sulfide 1 mmol, cdcn(30) 5 mg, methanol 3 mL,  $O_2$  1 atm, visible-light irradiation, at room temperature.0.5 mL of reaction solution was taken into a 10 mL volumetric flask and brought to volume by methanol. And 1 mL of the solution was taken into a 25 mL volumetric flask and brought to volume by acetic acid-sodium acetate buffer solution (pH 4.7). A bismuth film electrode was used as work electrode, with a platinum as the counter electrode and an Ag/AgCl electrode as the reference electrode. After 5 h irradiation, the concentration of Cd<sup>2+</sup> was 38.3 mg/L in the reaction solution.

| Catalytic                           | Sulfide (mmol)/        | Conversion (%)  | Salaativity (%) | Time (h) | Pafaranaa |
|-------------------------------------|------------------------|-----------------|-----------------|----------|-----------|
| system                              | photocatalyst (mg)     | Conversion (70) | Selectivity (%) |          | Reference |
| cdcn(30)                            | 0.2                    | 100             | 97              | 5        | this work |
| mpg-C <sub>3</sub> N <sub>4</sub> , | 0.02                   | 06              | 07              | 5        | 20        |
| IBA                                 | 0.02                   | 90              | 91              | 3        | 29        |
| Pt/BiVO <sub>4</sub>                | $3 \times 10^{-3}$     | 96              | 99              | 12       | 34        |
| TiO <sub>2</sub> ,                  | 7.510-3                | 01              | 02              | 4        | 27        |
| benzylamine                         | 7.5 × 10 <sup>-5</sup> | 91              | 92              | 4        | 21        |
| TiO <sub>2</sub> , TEA              | $7.5 \times 10^{-3}$   | 85              | 93              | 10       | 28        |

**Table S1** Comparison of photocatalytic oxidation of methyl p-methoxyphenyl sulfide on cdcn(30) with other similar systems.

 Table S2
 The effects of acetic acid on photocatalytic oxidation of methyl p-methoxyphenyl sulfide.

| Entry | Amount of added<br>acetic acid (mmol) | Conv. (%) | Sel. (%) |  |
|-------|---------------------------------------|-----------|----------|--|
| 1     | 0                                     | 17.0      | 100      |  |
| 2     | 0.5                                   | 34.5      | 99.8     |  |
| 3     | 1                                     | 36.4      | 99.8     |  |

Reaction conditions: methyl p-methoxyphenyl sulfide 1 mmol, cdcn(30) 5 mg, acetonitrile 3 mL, filled with oxygen (1 atm) every 2 h, at room temperature, white LEDs ( $30 \times 3$  W,  $\lambda \ge 420$  nm), 4 h irradiation.