Supporting Information

 Fe_9S_{10} -decorated N, S co-doped graphene as a new and efficient electrodecatalyst for oxygen reduction and oxygen evolution reactions

Xiu-Xiu Ma^a, Yan Su^a, Xing-Quan He^{a*1}

^aSchool of Materials Science and Engineering, Changchun University of Science and

Technology, Jinlin, 130022, RP. China.

^{1*}Corresponding author: <u>hexingquan@hotmail.com</u>

Tel:+86 431 85583430

Figure S1. (a) Electron transferred number and (b) kinetic current density for 20 wt% Pt/C and $Fe_9S_{10}(700)/N$,S-G in the tested kinetic potentials (0.3–0.8 V vs. RHE).

Catalyst	<i>E</i> _o [V vs. RHE]	<i>E</i> _{1/2} [V vs. RHE]	J [mA cm ⁻²]	Reference
Fe ₉ S ₁₀ (700)/N,S-G	0.959	0.800	-5.73	This work
HNCS71	0.970	0.820	-6.50	[1]
FePc/C(600)	0.926	0.859	-5.60	[2]
(FeP) _n -CNTs	0.880	0.760	-4.70	[3]
Fe/Co-CMP-800	0.880	0.760	-4.80	[4]
Co _x C/C	0.934	0.760	-4.20	[5]
Fe–N _x /HPC	0.935	0.880	-5.00	[6]
CoP-CMP800	0.830	0.870	-4.62	[7]
Fe-N-C/VA-CNT	0.970	0.790	-6.00	[8]
FeCo-NC	1.050	0.840	-5.00	[9]
Fe-N-C/850	0.960	0.600	-4.20	[10]
Fe/Fe ₃ C@N-C-NaCl	0.970	0.869	-5.00	[11]
Fe-N-C	1.040	0.880	-5.60	[12]
Fe-CNT-PA	0.925	0.795	-6.82	[13]
Fe–N–C	0.990	0.784	-6.50	[14]
P-CNCo-20	0.925	0.845	-6.00	[15]

 Table S1 The ORR parameters of the electrodecatalyst compared with the state-of-the-art ORR

 catalysts in literatures

Catalysts	$\eta_{10}[mV]$	Tafel slope [mV dec ⁻¹]	Reference
Fe ₉ S ₁₀ (700)/N,S-G	400	71	This work
N-MGF	402	67	[16]
FeP@NPCs	300	80	[17]
Co ₂ P@N,P -PCN/CNTs	300	72	[18]
NiFeO@MnO _x	400	42	[19]
N-Co ₉ S ₈ /G	409	82.7	[20]
CoMnO@CN	290	97	[21]
N,P-GCNS	340	-	[22]
Co _x S _y @C-1000	470	-	[23]
Fe ₃ O ₄ @Co ₉ S ₈ /rGO	320	65.5	[24]
Co ₉ S ₈ @MoS ₂ /CNFs	430	61	[25]
echo-MWCNTs	360	41	[26]

 Table S2 The OER parameters of the electrodecatalyst compared with the state-of-the-art ORR

 catalysts in literatures

Notes and references

[1] J. Sanetuntikula, C. Chuaichamb, Y. W. Choic and S. Shanmugam, J. Mater. Chem. A, 2015, DOI: 10.1039/C5TA02677F.

[2] H. A. Miller, M. Bellini, W. Oberhauser, X. Deng, H. Q. Chen, Q. G. He, M. Passaponti, M. Innocenti, R. Yang, F. F. Sun, Z. Jiang and F. Vizza, *Phys. Chem. Chem. Phys.*, 2016, DOI: 10.1039/C6CP06798K.

[3] H. X. Jia, Z. J. Sun, D. C. Jiang, S. F. Yang and P. W. Du, Inorg. Chem. Front.,

2016, **3**, 821–827.

- [4] S. Brüller, H. W. Liang, U. I. Kramm, J. W. Krumpfer, X. L. Feng and K. Müllen,*J. Mater. Chem. A*, 2015, **3**, 23799–23808.
- [5] L. S. Chen, X. Z. Cui, Q. S. Wang, X. H. Zhang, G. Wan, F. M. Cui, C. Y. Wei and J. L. Shi, *Dalton Transactions*, 2015, DOI: 10.1039/C5DT03337C.
- [6] Z. P. Zhang, X. J. Gao, M. L. Dou, J. Ji and F. Wang, J. Mater. Chem. A, 2016,
 DOI: 10.1039/c6ta09124e.
- [7] Z. S. Wu, L. Chen, J. Z. Liu, K. Parvez, H. W. Liang, J. Shu, H. Sachdev, R. Graf,
- X. L. Feng and K. Müllen, Adv. Mater., 2014, 26, 1450-1455.
- [8] S. Yasuda, A. Furuya, Y. Uchibori, J. Kim and K. Murakoshi, *Adv. Funct. Mater.*, 2016, 26, 738–744.
- [9] Z. P. Zhang, M. L. Dou, H. J. Liu, L. M. Dai and F. Wang, *Small*, 2016, **12**, 4193–4199.
- [10] A. H. A. M. Videla, L. Osmieri, M. Armandi and S. Specchia, *Electrochimica Acta*, 2015, **177**, 43–50.
- [11] Y. Z. Chen, C. M. Wang, Z. Y. Wu, Y. J. Xiong, Q. Xu, S. H. Yu and H. L. Jiang, Adv. Mater., 2015, 27, 5010–5016.
- [12] W. Luo, T. Liu, P. P. Zhao, X. Hua, S. L. Chen and G. Z. Cheng, *J. Mater. Chem.A*, 2016, DOI: 10.1039/C6TA03265F.
- [13] G. Yang, W. Choi, X. Pub and C. Yu, *Energy Environ. Sci.*, 2015, **8**, 1799–1807.
 [14] J. K. Li, S. Ghoshal, W. T. Liang, M. T. Sougrati, F. Jaouen, B. Halevi, S.
- McKinney, G. McCool, C. R. Ma, X. X. Yuan, Z. F. Ma, S. Mukerjee and Q. Y. Jia,

Energy Environ. Sci., 2016, DOI: 10.1039/C6EE01160H.

- [15] Y. Zhang, L. B. Huang, W. J. Jiang, X. Zhang, Y. Y. Chen, Z. D. Wei, L. J. Wan and J. S. Hu, J. Mater. Chem. A, 2016, 4, 7781–7787.
- [16] C. L. Zhang, B. W. Wang, X. C. Shen, J. W. Liu, X. K. Kong, S. S. C. Chuang,
- D. Yang, A. G. Dong and Z. M. Peng, Nano Energy, 2016, 30, 503-510.
- [17] R. Z. Zhang, C. M. Zhang and W. Chen, J. Mater. Chem. A, 2016, DOI: 10.1039/C6TA08363C.
- [18] X. Z. Li, Y. Y. Fang, F. Li, M. Tian, X. F. Long, J. Jin and J. T. Ma, J. Mater. Chem. A, 2016, 4, 15501–15510.
- [19] Y. Cheng, S. Dou, M. Saunders, J. Zhang, J. Pan, S. Y. Wang and S. P. Jiang, J. Mater. Chem. A, 2016, 4, 13881–13889.
- [20] S. Dou, L. Tao, J. Huo, S. Y. Wang and L. M. Dai, *Energy Environ. Sci.*, 2016, 9, 1320–1326.
- [21] J. Li, Y. C. Wang, T. Zhou, H. Zhang, X. H. Sun, J. Tang, L. J. Zhang, A. M. Al-
- Enizi, Z. Q. Yang and G. F. Zheng, J. Am. Chem. Soc., 2015, 137, 14305–14312.
- [22] R. Li, Z. D. Wei and X. L. Gou, ACS Catal., 2015, 5, 4133-4142.
- [23] B. L. Chen, R. Li, G. P. Ma, X. L. Gou, Y. Q. Zhu and Y. D. Xia, *Nanoscale*, 2015, 7, 20674–20684.
- [24] J. Yang, G. X. Zhu, Y. J. Liu, J. X. Xia, Z. Y. Ji, X. P. Shen and S. K. Wu, Adv. Funct. Mater., 2016, DOI: 10.1002/adfm.201600674.
- [25] H. Zhu, J. F. Zhang, R. P. Yanzhang, M. L. Du, Q. F. Wang, G. H. Gao, J. D. Wu,
- G. M. Wu, M. Zhang, B. Liu, J. M. Yao and X. W. Zhang, Adv. Mater., 2015, 27,

4752–4759.

[26] X. Y. Lu, W. L. Yim, B. H. R. Suryanto and C. Zhao, J. Am. Chem. Soc., 2015, 137, 2901–2907.