Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017 ### **Electronic Supplementary Information for** ### The effect of ring size on the selective carboxylation of cycloalkene oxides Raiedhah Alsaiari^a, Luke T. Perrott^a, Ewa Nowicka^a, Rebecca V. Engel^a, Peter J. Miedziak^a, Simon A. Kondrat^a, Jennifer K. Edwards^a, David J. Willock^{a*} and Graham J. Hutchings^{a*} - ^a.Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK. - * Correspondence to Graham J. Hutchings or David J. Willock S_N2 TS-1b Tel: +44 29 2087 4059, Fax: (+44) 2920-874-030, E-mail: hutch@cardiff.ac.uk Tel: +44 29 2087 4779, Fax: (+44) 2920-874-030, E-mail: willockdj@cardiff.ac.uk #### **Calculated structures** Co-ordinates for all optimised structures and transition states have been uploaded as Car_Files.rar along side this Supplementary Information document. The associated research data can be found at http://doi.org/10.17035/d.2017.0038069018. Int. 2t Int. 2t' Int. 3t Int. 3t' S_N1 TS-1b' Int. 3b Int. 3b' Int. 3t' Int. 2b Int. 2b' Int. 2t Int. 2t' Int. 3b Int. 3b' Int. 3t Int. 3t' Int. 3t' Br $$\bigcirc$$ \bigcirc \bigcirc \bigcirc NEt₄ TS-2b Int. 4b Int. 4b' TS-3 (all) Int.5 – Cis Int. 4t Int. 4t' Int.5 - Trans **Product – Trans** $$\begin{array}{c|c} & & & & \\ & & & \\ Br & & & \\ \end{array}$$ # **Isolated Reagents** ### Spectroscopic Data: Suggested assignments of products are shown on the spectra where it was possible. Cyclopentene oxide experiment (90 °C, 20 bar CO₂, 4 h) ### A more concentrated sample shows further side products: Cyclohexene oxide experiment (125 °C, 20 bar CO₂, 16 h) A more concentrated sample shows further side products and the starting material: ## Cyclooctene oxide experiment (130 °C, 20 bar CO₂, 24 h) At 12.9 min two compounds are co-eluting, an isomer of the starting material and tributylamine.