Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

### **Electronic Supplementary Information for**

### The effect of ring size on the selective carboxylation of cycloalkene oxides

Raiedhah Alsaiari<sup>a</sup>, Luke T. Perrott<sup>a</sup>, Ewa Nowicka<sup>a</sup>, Rebecca V. Engel<sup>a</sup>, Peter J. Miedziak<sup>a</sup>, Simon A. Kondrat<sup>a</sup>, Jennifer K. Edwards<sup>a</sup>, David J. Willock<sup>a\*</sup> and Graham J. Hutchings<sup>a\*</sup>

- <sup>a</sup>.Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
- \* Correspondence to Graham J. Hutchings or David J. Willock

S<sub>N</sub>2 TS-1b

Tel: +44 29 2087 4059, Fax: (+44) 2920-874-030, E-mail: hutch@cardiff.ac.uk

Tel: +44 29 2087 4779, Fax: (+44) 2920-874-030, E-mail: willockdj@cardiff.ac.uk

#### **Calculated structures**

Co-ordinates for all optimised structures and transition states have been uploaded as Car\_Files.rar along side this Supplementary Information document.

The associated research data can be found at <a href="http://doi.org/10.17035/d.2017.0038069018">http://doi.org/10.17035/d.2017.0038069018</a>.

Int. 2t

Int. 2t'

Int. 3t

Int. 3t'

S<sub>N</sub>1 TS-1b'



Int. 3b

Int. 3b'

Int. 3t'

Int. 2b

Int. 2b'

Int. 2t

Int. 2t'



Int. 3b

Int. 3b'

Int. 3t

Int. 3t'

Int. 3t'

Br 
$$\bigcirc$$
  $\bigcirc$   $\bigcirc$   $\bigcirc$  NEt<sub>4</sub>



TS-2b

Int. 4b

Int. 4b'

TS-3 (all)

Int.5 – Cis

Int. 4t

Int. 4t'

Int.5 - Trans

**Product – Trans** 

$$\begin{array}{c|c} & & & & \\ & & & \\ Br & & & \\ \end{array}$$

# **Isolated Reagents**

### Spectroscopic Data: Suggested assignments of products are shown on the spectra where it was possible.

Cyclopentene oxide experiment (90 °C, 20 bar CO<sub>2</sub>, 4 h)











### A more concentrated sample shows further side products:







Cyclohexene oxide experiment (125 °C, 20 bar CO<sub>2</sub>, 16 h)

















A more concentrated sample shows further side products and the starting material:







## Cyclooctene oxide experiment (130 °C, 20 bar CO<sub>2</sub>, 24 h)



At 12.9 min two compounds are co-eluting, an isomer of the starting material and tributylamine.











