Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Hydrogenation/oxidation triggered highly efficient reversible color switching of organic molecules

Xiao Zhou, Yi-Fan Jiang, Hong-Li Guo, Xin Wang, Ya-Nan Liu, M. Imran and An-Wu Xu^{*}

Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.

*To whom correspondence should be addressed. Email:<u>anwuxu@ustc.edu.cn</u>

Fig. S1 TEM image of obtained ZnO_{1-x} nanorods.

Fig. S2 The X-band EPR spectra of the ZnO_{1-x} nanorods and commercial ZnO sample recorded at T = 140 K.

Fig. S3 UV-vis spectra of Pd-ZnO (commercial ZnO without oxygen vacancies) showing the hydrogenation process under 1 bar H_2 and room temperature.

Fig. S4 The UV-vis spectra of HEC stabilized LTH solution after catalyst removed exposing to air for different time.

Fig. S5 Illustration of HEC stabilized of TH⁺ and LTH.

Fig. S6 UV-vis spectra of Pd-ZnO (commercial ZnO without oxygen vacancies) showing the oxidative dehydrogenation process under 1 bar O_2 and room temperature.

Entry	Amounts of Pd- Time of color		Time of color			
	ZnO_{1-x} (mg)	fading (min)	recovery (min)			
1	0.125	2.8	4.2			
2	0.25	2.2	3.3			
3	0.5	2.1	3.1			

Table 1 The switching behavior change with the concentration of Pd- ZnO_{1-x}

Reaction condition: various amounts of 1 wt% Pd-ZnO_{1-x} catalyst, 30 μ L TH⁺/HEC/Pd-ZnO_{1-x} mixture for one drop, 1 bar H₂/O₂.

Table 2 The switching behavior change with the drop volume of $TH^+/HEC/Pd$ -ZnO_{1-x} mixture.

Volume of	Purple	Colorless leuco-	Time of	Time of color
drop (µL)	color	thionin (LTH)	color fading	recovery
	(TH ⁺)		(min)	(min)
10	۲	٢	1.5	2.1
30			2.2	3.3
50		0	5.3	7.2
100	-	0	8.8	10.2

Reaction condition: 0.25 mg of 1 wt% Pd-ZnO_{1-x} catalyst, different drop volume of TH⁺/HEC/Pd-ZnO_{1-x} mixture, 1 bar H_2/O_2 .