Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supporting Information:

Dehydrogenative coupling promoted by copper catalysts: a way to optimise and upgrade bio-alcohols

Nicola Scotti,^a Federica Zaccheria,^a Claudio Evangelisti,^a Rinaldo Psaro^a and Nicoletta Ravasio^a*

^{a.} CNR Institute of Molecular Sciences and Technology, Via Golgi 19, 20133 Milano, Italy, Phone +39 0250314382;

* Corresponding author, email: n.ravasio@istm.cnr.it

Figure S1. FT-IR of adsorbed 1-butanol over different catalysts and supports

Element	Atomic %	Wt %			
Cu	19.3	11.2			
Si	8.1	2.1			
Zr	72.6	60.5			

PM		PA		Atomic %		wt TOT			v	vt%		wt%	
SiO ₂	60	Si	28.1	Si	8.1	SiO ₂	4.9		SiO ₂	4.4%	\rightarrow	Si	2.1
ZrO ₂	123	Zr	91.2	Zr	72.6	ZrO ₂	89.3		ZrO ₂	81.6%	\rightarrow	Zr	60.5
CuO	79,5	Cu	63.5	Cu	19.3	CuO	15.3		CuO	14.0%	\rightarrow	Cu	11.2
				тот	100.0	wt tot	109.5						

Figure S2. EDX spectrum of the $CuO/ZrO_2 C$ grain represented in Figure 3. In the tables are reported the Cu, Zr and Si atomic and weight composition and the calculation from atomic% to wt%.

Figure S3. HRTEM micrograph of CuO/ZrO₂ C catalyst.

Figure S4. STEM measurements of CuO/ZrO₂ A: a) HAADF image of a catalyst grain (the length of the bar corresponds to 50 nm); b-d) STEM-EDX mapping of the catalyst showing the copper dispersion present in the catalyst: b) copper map (green), c) zirconium map (red), d) overlay of copper (green) and zirconium (red) maps.

Figure S5.TPR analysis of CuO/ZrO2 C, CuO/ZrO2B, CuO/ZrO2 A, CuO/Al2O3 and CuO/SiO2

Figure S6. XRD of CuO/ZrO₂ C

Figure S5 shows the XRD pattern for the CuO/ZrO₂ C catalyst. No reflections for the CuO were detected, indicating the high dispersion of the copper phase, while the broad peak is typical of amorphous materials (in the present case the ZrO_2 C phase).

Figure S7. FT-IR of pyridine over different catalysts after degassing at 150 °C

The FT-IR spectrum of pyridine after degassing at 150 °C (Figure S6) shows three main bands at 1446, 1607 and 1485 cm⁻¹, that are in agreement with the presence of Lewis acid sites. For zirconiabased materials the band at 1446 cm⁻¹ lies at relative low wavenumbers, very close to the one usually assigned to physisorbed or hydrogen bonded pyridine, but its resistance to outgassing up to 250 °C (together with the bands at 1607 and 1485 cm⁻¹) indicate unambiguously a Lewis acid-base interaction with pyridine. In the case of CuO/ZrO₂ C (very weak) and B a broad band at around 1450 cm⁻¹ is typical of the presence of Brønsted acid sites.

Figure S8. FT-IR of adsorbed CO₂ over CuO/ZrO₂ C

After CO₂ adsorption at RT we obtain a very broad spectrum (Figure S7). After degassing at increasing temperature, three maxima at 1558, 1506 and 1371 cm⁻¹ are detectable that could be due to bicarbonates and carbonates species mainly formed on basic hydroxyl group [69] while two peaks at 1576 and 1351cm⁻¹, with a spectral gap of 225 cm⁻¹are diagnostic for bidentate carbonate species on coordinatively unsaturated acid-base pair centers. The bands at 1385 and 1371 cm⁻¹, together to the one at 1576 cm⁻¹, are also indicative for the presence of coordinatively unsaturated O²⁻ centres characterized by high basicity [69, 70]. Therefore the CO₂ adsorption revealed the presence of superficial strongly basic centres and acid-base pairs.

For comparison the spectrum of ZrO_2 C is reported. After evacuation in ultra-high vacuum at 350 °C for one night the material already shows bands due to high-resistant species arising from the contact with atmospheric CO₂ (Figure S8). After CO₂ adsorption and desorption at increasing temperature spectra do not change significantly.

Figure S9. FT-IR of adsorbed CO₂ overZrO₂ C

Experimental details

All the experiments were performed in duplicate and in triplicate for the best results obtained (that is for experiments 4 and 5 in Table 1 and for the experiments 1 and 6 in Table 2.

Quantitative analysis

Conversion of butanol and **yield** of butylbutanoate were evaluated by GC analysis by using hexadecane as internal standard according to the following formulas:

$$Conv \% = \left(\frac{Mol \ butanol \ i - mol \ butanol \ f}{mol \ butanol \ i}\right) \times 100$$

$$Mol \ Butanol \ f = \left[\left(\frac{A \ butanol}{A \ std} - b\right)/a\right] \times Mol \ std$$

$$Y \% = \left[\frac{Mol \ butylbutanoate \ f}{Mol \ butanol/2} \times 100\right]$$

$$Mol \ Butylbutanoate = \left[\left(\frac{A \ butylbutanoate}{A \ std} - b\right)/a\right] \times Mol \ std$$

with *a* and *b* drawn by the calibration curve.

The amount of hydrogen produced has been calculated as follows:

Starting mol of butanol = 0,17 mol Autoclave dead volume = 100 mL H_2 pressure produced during reaction = 15 atm

$$mol H_2 produced = \frac{15 atm \times 0.1 L}{0.082 \left(\frac{atm L}{mol K}\right) 298 K} = 0.061 mol$$

Theoretical mol of H_2 at 40% conv = 0,17 mol \times 0,40 = 0,068 mol

Figure S10.1HNMR analysis f reaction mixture obtained from 1-butanol over $CuO/ZrO_2 C$ after 24 h

Figure S11. GC-FID analysis of reaction mixture obtained from 1-butanol over CuO/ZrO_2 C after 24 h