Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

> Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Self-Assembly of Arene Ruthenium Acylpyrazolone Fragments to Tetranuclear Metallacycles. Molecular Structures and Solid-State ¹⁵N CPMAS NMR Correlations.

Riccardo Pettinari,^a* Fabio Marchetti,^b Claudio Pettinari,^a Francesca Condello,^a Brian W. Skelton,^c Allan H. White,^d Michele Remo Chierotti^e and Roberto Gobetto.^e*

[a] School of Pharmacy, University of Camerino, via S. Agostino 1, 62032 Camerino MC, Italy. E-mail: riccardo.pettinari@unicam.it; Tel: +39-0737-632338;

[b] School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino MC, Italy; [c] School of Chemistry and Biochemistry M310, The University of Western Australia, Crawley, WA 6009, Australia;

[d] Centre for Microscopy, Characterization and Analysis M010, The University of Western Australia, Crawley, WA 6009, Australia;

[e] Dipartimento di Chimica and NIS Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.

Table of content	
Crystallographic appendix	2
Relevant ¹⁹ F NMR spectra	4
TGA curve	8

Table of content

Crystallographic appendix

Table S1. Crystal/Refinement Data, (1), (2) and (4)

	1	4	2
formula	$C_{22}H_{24}Cl_2N_2O_2Ru$	$C_{27}H_{35}ClN_2O_2Ru$	$\{[(C_{22}H_{24}ClN_2O_2Ru)]_4(O_3SCF_3)\}$
			$(O_3SCF_3)_3CHCl_3 \cdot 2H_2O$
M _r (Dal)	520.4	556.1	2691.5
cryst. syst.	Triclinic	Triclinic	Monoclinic
space group	<i>P</i> 1 (No.2)	<i>P</i> 1 (No.2)	<i>C</i> 2 (No. 5)
<i>a</i> (Å)	7.5449(2)	7.8180(3)	32.1762)
<i>b</i> (Å)	12.0143(4)	11.5430(4)	11.3815(4)
<i>c</i> (Å)	12.9409(5)	14.1909(5)	15.8038(8)
α (deg)	112.841(4)	89.197(3)	
β (deg)	95.867(3)	85.167(3)	116.629(7)
γ (deg)	103.150(3)	77.653(3)	
$V(Å^3)$	1028.27(7)	1246.55(8)	5173.7(4)
$D_{\rm c}\left(Z ight)$	1.681(2)	1.48 ₂ (2)	1.72 ₈ (2)
$\mu_{Mo}\left(mm^{-1}\right)$	1.044	0.76	0.93
specimen (mm)	0.25,0.18,0.04	0.62,0.32,0.23	0.13,0.13,0.07
$T_{\min/\max}$	0.86	0.85	0.95
2θ _{max} (°)	68.6	75	55
$N_{ m t}$	27880	46395	27740
$N(R_{\rm int})$	8240 (0.035)	12528 (0.029)	11356 (0.098)
$N_{\rm o}\left(I > 2\sigma(I)\right)$	7376	11561	6488
$R_1(I \ge 2\sigma(I))$	0.031	0.024	0.074
wR_2 (a,b) (all data)	0.072 (0.032,0.52)	0.060 (0.025,0.35)	0.135 (0.060)
S	1.03	1.08	0.95
$ \Delta \rho _{max} (e \text{\AA}^{-3})$	1.07	0.68	1.49

Table S2. Selected non-hydrogen ruthenium environment geometries, (1), (2), (4). C(0) are the ring centroids, O,N(n2,5,6) the ligating nitrogen or oxygen atoms of segments n = 1,2.

	1	4	2 (components 1; 2)				
Distances (Å)							
Ru-C(Csub6)	2.149(9)	2.1624(9)	2.135(8) 2.146(11)				
	-2.201(2)	-2.1798(9)	-2.196(8); $-2.202(10)$				
Ru-C(0)	1.653	1.640	1.641 ; 1.633				
Ru-Cl/N	2.4120(4)	2.3968(3)	2.152(7) ; 2.137(8)				
Ru-O(n5)	2.0877(11)	2.0835(7)	2.089(6) ; 2.055(6)				
Ru-O(n6)	2.108(11)	2.1024(7)	2.099(6) ; 2.089(7)				
O(n5)-C(n5)	1.270(2)	1.2732(11)	1.261(11); 1.232(10)				
O(n6)-C(n6)	1.258(2)	1.2646(11)	1.235(10); 1.263(11)				
C(n5)-C(n4)	1.424(2)	1.4278(11)	1.441(14); 1.491(15)				
C(n4)-C(n6)	1.414(2)	1.4166(12)	1.401(13); 1.412(13)				
	Angle	es (degrees)					
C(0)-Ru-O(n5)	127.3	127.0	127.8 ; 127.4				
C(0)-Ru-O(n6)	128.2	126.0	127.5 ; 124.3				
C(0)-Ru-Cl/N(n2)	129.1	129.9	125.9 ; 130.9				
Cl/N(n2)-Ru-O(n5)	84.50(3)	85.07(2)	88.5(3) ; 86.6(3)				
Cl/N(n2)-Ru-O(n6)	84.63(3)	85.28(2)	87.8(9) ; 87.2(3)				
O(n5)-Ru-O(n6)	88.25(4)	89.23(3)	86.0(2) ; 86.1(3)				
Ru-O(n5)-C(n5)	123.07(10)	121.37(6)	123.4(6) ; 127.9(7)				
Ru-O(n6)-C(n6)	129.13(10)	129.43(6)	132.7(6) ; 132.0(6)				
Ru-N(n2)-N(n1)	-	-	122.5(6) ; 127.7(5)				
Ru-N(n2)-C(n3)	-	-	135.1(6) ; 132.8(7)				
N(n2)-N(n1)-C(n5)	111.85(14)	112.20(3)	114.0(8) ; 112.0(7)				
N(n1)-N(n2)-C(n3)	106.05(11)	105.83(8)	102.4(8) ; 104.4(8)				

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication no. CCDC: 945237(1); 945230 (2); 945238 (4). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+(44)1223-336-033; email: <u>deposit@ccdc.cam.ac.uk</u>).

Figure S1. Variable temperature ¹⁹F NMR spectra of $[(\eta^6-cym)Ru(Q^{CH2CI})]_4(SO_3CF_3)_4$ (4) carried out in CD₃CN.

Figure S2. Variable temperature ¹⁹F NMR spectra of $[(\eta^{6}-cym)Ru(Q^{CH2CI})]_{4}(BF_{4})_{4}$ (5) carried out in CD₃CN.

Figure S3. Variable temperature ¹⁹F NMR spectra of $[(\eta^{6}-cym)Ru(Q^{hex})]_{4}(SO_{3}CF_{3})_{4}$ (6) carried out in CD₃CN.

Figure S5. TGA of ligand HQ^{CH2CI}.

Figure S6. TGA of ligand HQ^{hex}.

Figure S7. TGA of ligand HQ^{nPe}.

Figure S8. TGA of [(η^{6} -cym)Ru(Q^{CH2CI})CI] (1).

Figure S9. TGA of [(η^{6} -cym)Ru(Q^{hex})Cl] (2).

Figure S10. TGA of [(η^{6} -cym)Ru(Q^{nPe})Cl] (3).

Figure S11. TGA of {[$(\eta^6$ -cym)Ru(Q^{CH2CI})]₄(OTf)}(OTf)₃ (4).

Figure S12. TGA of { $[(\eta^{6}-cym)Ru(Q^{CH2CI})]_{4}(BF_{4})$ }(BF₄)₃(5).

Figure S13. TGA of $\{[(\eta^{6}-cym)Ru(Q^{hex})]_{4}(OTf)\}(OTf)_{3}$ (6).

 $\label{eq:Figure S14.} \mbox{TGA of } \{[(\eta^{6}\mbox{-}cym)\mbox{Ru}(\mbox{Q}^{n\mbox{Pe}})]_{4}\mbox{(OTf)}\}\mbox{(OTf)}_{3}\mbox{(7)}.$