Electrical Supplementary Information for

Insights into the flexibility of ZrM_xO_y (M= Na, Mg, Al) nanofibrous

membranes as promising infrared stealth materials

Xue Mao,^a Ying Bai,^a Jianyong Yu^b and Bin Ding*abc

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

^b Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051, China

^c Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China

* Corresponding author. E-mail: binding@dhu.edu.cn; Phone: +86-21-62378202; Fax: +86-21-62378202

Table S1 Summary of lattice parameters, tetragonal ratio, and grain size of the Na, Mg, and Al doped ZNF membranes with the uniform dopant content of 5 mol%. Theoretical lattice constants of monoclinic and tetragonal zirconia was also given.

	Lattice parameters						Tetragona	Grain size (nm)	
Dopant	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	l ratio (%)	m	t
Na	5.320	5.191	5.157	90	99.2	90	5.8	32.7	60.4
Mg	5.318	5.200	5.155	90	99.2	90	8	25.2	31.2
Al	3.607	-	5.169	90	90	90	80.6	25.8	22.8
monoclinic	5.313	5.213	5.147	90	99.2	90	0	-	-
tetragonal	3.595	-	5.193	90	90	90	100	-	-

Table S2 Summary of solid solution compensation mechanism, chemicals, and density of ZrM_xO_y nanofibrous membranes with the uniform dopant content of 5 mol%. Theoretical density of monoclinic and tetragonal zirconia was also given.

Dopant	Solid solution compensation mechanism	Chemical	Density (g cm ⁻³)
Ne	Vacancy	Zr _{0.9} Na _{0.1} O _{1.85}	5.386
Ina	Dopant interstitial	$Zr_{1.8/1.85}Na_{0.2/1.85}O_2$	5.823
Ma	Vacancy	$Zr_{0.95}Mg_{0.05}O_{1.95}$	5.62
Nig	Dopant interstitial	$Zr_{1.9/1.95}Mg_{0.1/1.95}O_2$	5.762
A 1	Vacancy	$Zr_{0.9}Al_{0.1}O_{1.95}$	5.728
Al	Dopant interstitial	$Zr_{1.8/1.95}Al_{0.2/1.95}O_2$	5.875
monoclinic		ZrO ₂	5.816
tetragonal		ZrO_2	6.097

Fig. S1 FE-SEM image of the zirconia nanofibrous membranes without dopant. Inset is the optical image of the relevant membranes.

Fig. S2 Schematic representation of theoretical (a) monoclinic and (b) tetragonal cell structures of zirconia power, respectively.

Fig. S3 XRD patterns of Al doped ZNF membranes with the dopant contents of 2.5 and 10 mol%.