Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information for :

Optical and relaxometric properties of monometallic (Eu^{III}, Tb^{III}, Gd^{III}) and heterobimetallic (Re^I/Gd^{III}) systems based on a functionalized bipyridine-containing acyclic ligand

Nadine Leygue,^{a,b} Alexandre Boulay,^{a,b} Chantal Galaup,^{a,b} Eric Benoist,^{a,b} Sophie Laurent,^{c,d} Luce Vander Elst,^{*c,d} Béatrice Mestre-Voegtlé,^{* ‡a,b} and Claude Picard^{*a,b}

^aCNRS; Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique,

SPCMIB, UMR-5068; 118 Route de Narbonne, F-31062 Toulouse cedex 9, France.

^bUniversité de Toulouse; UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules

d'Intérêt Biologique, SPCMIB; 118 route de Narbonne, F-31062 Toulouse cedex 9, France.

^cNMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical

Chemistry, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium.

^dCenter for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium

[‡]Present Address: CNRS, Laboratoire de Chimie de coordination (LCC), UPR 8241, 205 route de Narbonne, 31077 Toulouse cedex 4, France.

E-mail : luce.vanderelst@umons.ac.be (LVE), beatrice.mestre@lcc-toulouse.fr (BMV), picard@chimie.ups-tlse.fr (CP).

Table of contents	Page
Figure S1: ¹ H and J MOD ¹³ C NMR (300 and 75 MHz respectively; DMSO-d ₆) spectra of compound 2 ($H_5BPMNTA$).	S 3
Figure S2 : ¹ H and J MOD ¹³ C NMR (300 and 75 MHz respectively; CDCl ₃) spectra of compound 5 .	S4
Figure S3: ¹ H NMR (300 MHz; CDCl ₃) spectra of compounds 9 and 10.	S5
Figure S4: ¹ H and J MOD ¹³ C NMR (300 and 125 MHz respectively; CDCl ₃) spectra of compound 11 .	S 6
Figure S5: ¹ H NMR (400 MHz; D ₂ O) and ES ⁺ /HRMS spectra of compound 12.	S 7
Figure S6: HPLC-UV chromatogram and ES ⁻ /HRMS spectrum of Gd-BPMNTA complex (HPLC conditions are provided in the experimental part).	S 8
Figure S7: UPLC-UV chromatogram and ES ⁺ /HRMS spectrum of dinuclear Re/Gd complex 13 (UPLC conditions are provided in the experimental part).	S9
Figure S8: Plot of emission intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition (617 nm) vs. time after mixing BPMNTA chelator (1 μ M) and EuCl ₃ (1 equiv.) in Tris buffer (pH 7.4) at room temperature.	S10
Figure S9: Plot of emission intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition (617 nm) of Eu- BPMNTA complex (1 μ M) <i>vs</i> . time in the presence of 1000 molar equivalents of EDTA in Tris buffer (pH 7.4).	S10
Figure S10: Infrared spectrum of Re complex 9.	S 11
Figure S11: Infrared spectrum of dinuclear Re/Gd complex 13.	S 11
Figure S12: Absorption (left) and emission (right) spectra of compound 9 in CH ₃ CN.	S12
Figure S13: Absorption (left) and emission (right) spectra of compound 10 in CH ₃ CN.	S12
Figure S14: Plot of the paramagnetic relaxation rate, R_1^p , of Gd-BPMNTA complex and dinuclear complex 13 in water at 310 K and 20 MHz <i>vs.</i> complex concentrations (0.5 – 3 mM). $R_1^p = R_1^{obs} - R_1^{dia}$ where R_1^{obs} is the observed relaxation rate and R_1^{dia} is the relaxation rate in absence of paramagnetic center.	
Figure S15: Temperature (278 – 318 K) dependence of the proton longitudinal relaxivity, r_1 , of Gd-BPMNTA complex and dinuclear complex 13 in water at 20 MHz.	S13
Table S1: Parameters obtained from the theoretical fitting of the O-17 data of dinuclear Re/Gd complex 13 in water at 11.75 T.	S14
Table S2: Relaxivity values at 20 and 60 MHz ($T = 310$ K) and parameters obtained from the theoretical fitting of the proton NMRD data in water at 310 K of dinuclear Re/Gd complex 13 .	S14

Figure S1: ¹H and J MOD ¹³C NMR (300 and 75 MHz respectively; DMSO-d₆) spectra of compound **2** (H₅BPMNTA).

Figure S2: ¹H and J MOD ¹³C NMR (300 and 75 MHz respectively; CDCl₃) spectra of compound 5.

Figure S3: ¹H NMR (300 MHz, CDCl₃) spectra of compounds 9 and 10.

Figure S4: ¹H and J MOD ¹³C NMR (300 and 125 MHz respectively; CDCl₃) spectra of compound **11**.

Figure S5: ¹H NMR (400 MHz, D₂O) and ES⁺/HRMS spectra of compound **12**.

Figure S6: HPLC-UV chromatogram and ES⁻/HRMS spectrum of Gd-BPMNTA complex (HPLC conditions are provided in the experimental part).

Figure S7: UPLC-UV chromatogram and ES⁺/HRMS spectrum of dinuclear Re/Gd complex **13** (UPLC conditions are provided in the experimental part).

Figure S8: Plot of emission intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition (617 nm) vs. time after mixing BPMNTA chelator (1 μ M) and EuCl₃ (1 equiv.) in Tris buffer (pH 7.4) at room temperature.

Figure S9: Plot of emission intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition (617 nm) of Eu-BPMNTA complex (1 μ M) *vs.* time in the presence of 1000 molar equivalents of EDTA in Tris buffer (pH 7.4).

Figure S10: Infrared spectrum of Re complex 9.

Figure S11: Infrared spectrum of dinuclear Re/Gd complex 13.

Figure S12: Absorption (left) and emission (right) spectra of compound 9 in CH₃CN.

Figure S13: Absorption (left) and emission (right) spectra of compound 10 in CH₃CN.

Figure S14: Plot of the paramagnetic relaxation rate, R_1^p , of Gd-BPMNTA complex and dinuclear complex **13** in water at 310 K and 20 MHz *vs.* complex concentrations (0.5 – 3 mM). $R_1^p = R_1^{\text{obs}} - R_1^{\text{dia}}$ where R_1^{obs} is the observed relaxation rate and R_1^{dia} is the relaxation rate in absence of paramagnetic center.

Figure S15: Temperature (278 – 318 K) dependence of the proton longitudinal relaxivity, r_1 , of Gd-BPMNTA complex and dinuclear complex **13** in water at 20 MHz.

parameter	value
$\tau_{\rm M}^{310\rm K}$ [ns]	9.0 ± 3.0
$\Delta H^{\neq} [kJ \text{ mol}^{-1}]$	55.5 ± 0.7
$\Delta S^{\neq} [J \operatorname{mol}^{-1} \mathrm{K}^{-1}]$	87.9 ± 0.6
$A/\hbar \ [10^6 \text{ rad s}^{-1}]$	-3.9 ± 0.3
$B \ [10^{20} \text{ s}^{-2}]$	4.71 ± 0.85
τ_v^{298K} [ps]	1.35 ± 0.3
$E_{\rm v}$ [kJ mol ⁻¹]	4.95 ± 3.5

Table S1: Parameters obtained from the theoretical fitting of the O-17 data of dinuclear Re/Gd complex **13** in water at 11.75 T.

parameter	value
$\tau_{\rm M}^{310\rm K}$ [ns]	9
$\tau_{\rm R}^{310{\rm K}}$ [ps]	138 ± 3.3
τ_{so}^{310K} [ps]	87.6 ± 1.4
$\tau_{\rm V}^{310\rm K}$ [ps]	25.6 ± 1.5
$r_1 (\mathrm{mM}^{-1} \mathrm{s}^{-1})$ at 20 MHz	6.6
$r_1 (\mathrm{mM}^{-1} \mathrm{s}^{-1})$ at 60 MHz	6.0

Table S2: Relaxivity values at 20 and 60 MHz (T = 310 K) and parameters obtained from the theoretical fitting of the proton NMRD data in water at 310 K of dinuclear Re/Gd complex **13**. In the fitting procedure using the IS and OS model, some parameters were fixed: q = 1, $\tau_{\rm M} = 9$ ns, $r_{\rm GdH} = 0.31$ nm, d = 0.36 nm and $D = 2.93 \times 10^{-9}$ m² s⁻¹.