## Supplementary information

The influence of different coordination environments on onedimensional Cu(II) coordination polymers for the photo-degradation of organic dyes

Navid Hussain and Vimal K. Bhardwaj\*

Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.

| S. No. | Figure No.   | Content                                                                          | Page No. |
|--------|--------------|----------------------------------------------------------------------------------|----------|
| 1      | Scheme S1    | Schematic diagram showing photo-catalytic mechanism                              | 2        |
| 2      | Figure S1-S3 | I.R. spectrum of complex 1-3                                                     | 2-3      |
| 3      | Figure S4-S6 | ESI-MS spectrum of complex 1-6                                                   | 4-6      |
| 4      | Figure S7    | Packing diagram of compound ligand <b>H</b> ₄L <sup>1</sup>                      | 6        |
| 5      | Figure S8    | Hydrogen bonded pattern of compound ${f 1}$                                      | 7        |
| 6      | Figure S9    | Non-bonding interactions of compound <b>2</b>                                    | 7        |
| 7      | Figure S10   | Hydrogen bonded pattern of compound <b>3</b>                                     | 7        |
| 8      | Figure S11   | Tauc plot ( $\alpha$ hv) <sup>2</sup> versus photon energy (hv) for <b>1-3</b>   | 8        |
| 9      | Figure S12   | UV-Vis spectra of RB in the presence of complex 1 and                            | 8        |
| 10     | Figure S13   | <b>2.</b> UV-Vis spectra of MO in the presence of complex <b>1</b> and <b>2.</b> | 9        |
| 11     | Figure S12   | Powder X –ray diffraction pattern of <b>1-3</b>                                  | 9        |
| 12     | Figure S13   | Recycling test on <b>3</b> for RB photo-degradation                              | 10       |

## **Table of Contents**



Scheme S1. Schematic diagram showing photo-catalytic mechanism



Figure S1. I.R. spectrum of complex 1



Figure S2. I.R. spectrum of complex 2



Figure S3. I.R. spectrum of complex 3



Figure S4. ESI-MS spectrum of complex 1



Figure S5. ESI-MS spectrum of complex 2



Figure S6. ESI-MS spectrum of complex 3



Figure S7. Packing diagram of ligand  $H_4L^1$ 



**Figure S8.** Hydrogen bonded pattern of compound **1** showing the chains of molecules running along along b-axis.



Figure S9. Non-bonding interactions of compound 2, along c-axis showing the chains like arrangement of molecules.



**Figure S10.** Hydrogen bonded pattern of compound **3** showing the chains of molecules running along along a-axis.



**Figure S11.** Tauc plot  $(\alpha hv)^2$  versus photon energy (hv) for complex (a) **1**, (b) **2** and (c) **3**.



**Figure S12.** Changes of the UV-Vis spectra of RB in the presence of complex **1** and **2** after light illumination from 0 to 120 min.



**Figure S13.** Changes of the UV-Vis spectra of MO in the presence of complex **1** and **2** after light illumination from 0 to 120 min.



Figure S14. PXD patterns of (a) 1 (b) 2 (c) 3 simulated, before and after the photocatalytic RhB degradation.



Figure S15. Recycling test on 3 for RB photo-degradation under light irradiation.

| Bond lengths (Å) |            |         |            |        |            |  |
|------------------|------------|---------|------------|--------|------------|--|
| Cu1-O6           | 2.0207(14) | Cu1-07  | 2.6529(16) | Cu1-O9 | 2.1880(15) |  |
| Cu1-O10          | 2.830(2)   | Cu1-N2  | 2.0499(15) | Cu1-N3 | 1.9438(16) |  |
| Cu1-N4           | 2.0352(16) | Cu2-O3  | 1.9618(13) | Cu2-O4 | 1.9460(13) |  |
| Cu2-O5           | 2.2669(18) | Cu2-N5  | 1.9369(15) | Cu3-O1 | 1.9533(14) |  |
| Cu3-O2           | 1.9700(14) | Cu3-O12 | 2.2696(16) | Cu3-N1 | 1.9350(15) |  |

|            | Bond angles(°) |            |           |             |           |  |
|------------|----------------|------------|-----------|-------------|-----------|--|
| O6-Cu1-O7  | 53.38(5)       | O6-Cu1-O9  | 82.15(6)  | O6-Cu1-O10  | 131.31(6) |  |
| O6-Cu1-N2  | 99.09(6)       | O1-Cu3-O2  | 169.63(6) | O6-Cu1-N3   | 154.13(6) |  |
| O6-Cu1-N4  | 99.81(6)       | O7-Cu1-O9  | 135.50(5) | O7-Cu1-O10  | 74.24(5)  |  |
| 07-Cu1-N2  | 92.68(6)       | O7-Cu1-N3  | 100.79(6) | O7-Cu1-N4   | 89.23(6)  |  |
| O9-Cu1-O10 | 49.24(5)       | O9-Cu1-N2  | 93.18(6)  | O9-Cu1-N4   | 100.94(6) |  |
| O10-Cu1-N2 | 83.38(6)       | O10-Cu1-N3 | 74.36(6)  | O10-Cu1-N4  | 92.85(6)  |  |
| N2-Cu1-N3  | 78.64(6)       | N2-Cu1-N4  | 157.75(6) | O9-Cu1-N3   | 123.60(6) |  |
| N3-Cu1-N4  | 79.22(6)       | O3-Cu2-O4  | 172.29(6) | O3-Cu2-O5   | 93.99(6)  |  |
| O3-Cu2-N5  | 81.55(6)       | O4-Cu2-O5  | 91.09(6)  | O4-Cu2-N5   | 92.67(6)  |  |
| O5-Cu2-N5  | 90.01(6)       | O1-Cu3-O12 | 95.17(6)  | O1-Cu3-N1   | 92.29(6)  |  |
| O2-Cu3-O12 | 94.43(6)       | O2-Cu3-N1  | 81.25(6)  | O12 -Cu3-N1 | 106.37(6) |  |

Table S1(b). Selected bond lengths and angles  $(Å, \circ)$  for  $[Cu_3(L^1)(CI)_2(DMF)_2]_n$  (2)

| Bond lengths (Å) |           |           |           |         |           |
|------------------|-----------|-----------|-----------|---------|-----------|
| Cu1-N2           | 2.027(3)  | Cu1-N3    | 1.948(3)  | Cu1-N4  | 2.023(3)  |
| Cu1-Cl1_a        | 2.4120(9) | Cu1-Cl2_b | 2.4039(9) | Cu2-Cl1 | 2.3242(9) |

| Cu2-O1 1.       | 896(2)     | Cu2-O2      | 1.988(2)    | Cu2-06       | 5 2.240(2) |
|-----------------|------------|-------------|-------------|--------------|------------|
| Cu2-N1 1.       | 953(3)     | Cu3-Cl2     | 2.3777(9)   | Cu3-O3       | 1.982(2)   |
| Cu3-O4 1.889(3) |            | Cu3-O5      | 2.182(3)    | Cu3-N5       | 1.958(3)   |
|                 |            | Bone        | d angles(°) |              |            |
| N2-Cu1-N3       | 78.51(12)  | N2-Cu1-N4   | 157.29(13)  | Cl1_a-Cu1-N2 | 97.96(8)   |
| Cl2_b-Cu1-N2    | 97.90(8)   | N3-Cu1-N4   | 78.79(12)   | Cl1_a-Cu1-N3 | 129.76(8)  |
| Cl2_b-Cu1-N3    | 131.84(8)  | Cl1_a-Cu1-N | 4 96.06(8)  | Cl2_b-Cu1-N4 | 97.62(8)   |
| Cl1-Cu2-O1      | 91.64(7)   | Cl1-Cu2-O2  | 93.10(7)    | CI1-Cu2-O6   | 98.35(8)   |
| CI1-Cu2-N1      | 149.46(8)  | O1-Cu2-O2   | 173.21(10)  | O1-Cu2-O6    | 91.77(11)  |
| O1-Cu2-N1       | 92.75(11)  | O2-Cu2-O6   | 92.35(10)   | O2-Cu2-N1    | 80.72(11)  |
| O6-Cu2-N1       | 111.70(10) | Cl2-Cu3-O3  | 92.88(7)    | Cl2-Cu3-O4   | 92.74(8)   |
| Cl2-Cu3-O5      | 96.12(8)   | Cl2-Cu3-N5  | 143.01(8)   | O3-Cu3-O4    | 173.27(11) |
| O3-Cu3-O5       | 90.21(10)  | O3-Cu3-N5   | 81.02(11)   | O4-Cu3-O5    | 92.88(11)  |
| O4-Cu3-N5       | 92.25(12)  | O5-Cu3-N5   | 120.19(11)  | Cu3-O4-C21   | 128.5(3)   |

Table S1(c). Selected bond lengths and angles  $(Å, \circ)$  for  $[Cu_3(L^2)(NO_3)_4(H_2O)_4]_n$  (3)

| Bond lengths (Å) |          |         |          |         |           |
|------------------|----------|---------|----------|---------|-----------|
| Cu1-O3           | 2.312(4) | Cu1-O6  | 2.413(4) | Cu1-O9  | 1.937(4)  |
| Cu1-N3           | 2.126(4) | Cu1-N4  | 1.936(4) | Cu1-N5  | 2.095(4)  |
| Cu2-O2           | 1.985(4) | Cu2-O10 | 2.291(4) | Cu2-O11 | 1.974(4)  |
| Cu2-O16          | 2.632(4) | Cu2-N6  | 1.950(4) | Cu2-N7  | 2.011(4)  |
| Cu3-O1           | 1.968(4) | Cu3-O12 | 1.932(4) | Cu3-O13 | 2.340(11) |
| Cu3-N1           | 1.996(4) | Cu3-N2  | 1.938(4) | Cu3-O19 | 2.433(13) |

| Bond angles(°) |            |             |            |            |            |
|----------------|------------|-------------|------------|------------|------------|
| O3-Cu1-O6      | 173.68(14) | O16-Cu2-N7  | 98.69(16)  | O3-Cu1-O9  | 91.97(16)  |
| N6-Cu2-N7      | 80.64(17)  | O3-Cu1-N3   | 92.99(15)  | O1-Cu3-O12 | 96.68(16)  |
| O3-Cu1-N4      | 97.04(15)  | O1-Cu3-O13  | 85.2(3)    | O3-Cu1-N5  | 90.29(14)  |
| O1-Cu3-N1      | 161.44(17) | O6-Cu1-O9   | 82.09(16)  | O1-Cu3-N2  | 80.01(16)  |
| O6-Cu1-N3      | 86.53(15)  | O1-Cu3-O19  | 100.4(4)   | O6-Cu1-N4  | 89.04(15)  |
| O6-Cu1-N5      | 92.66(14)  | O12-Cu3-O13 | 81.1(3)    | O9-Cu1-N3  | 104.99(17) |
| O12-Cu3-N1     | 101.67(17) | O9-Cu1-N4   | 170.16(17) | O12-Cu3-N2 | 172.17(17) |
| O9-Cu1-N5      | 98.10(17)  | O12-Cu3-O19 | 90.8(4)    | N3-Cu1-N4  | 78.56(16)  |
| N3-Cu1-N5      | 156.54(16) | O13-Cu3-N1  | 100.3(3)   | N4-Cu1-N5  | 77.98(16)  |
| O13-Cu3-N2     | 105.5(3)   | O2-Cu2-O10  | 97.42(15)  | O2-Cu2-O11 | 97.26(16)  |
| N1-Cu3-N2      | 81.44(17)  | O2-Cu2-O16  | 80.49(15)  | O19-Cu3-N1 | 82.2(4)    |
| O2-Cu2-N6      | 79.86(16)  | O2-Cu2-N7   | 158.72(17) | O19-Cu3-N2 | 96.8(4)    |
| O10-Cu2-O11    | 85.92(15)  | O10-Cu2-O16 | 156.54(14) | O10-Cu2-N6 | 91.51(15)  |
| O3-Cu1-H9B     | 108.8(15)  | O10-Cu2-N7  | 91.52(16)  | O6-Cu1-H9B | 65.0(15)   |
| O11-Cu2-O16    | 71.30(14)  | O9-Cu1-H9B  | 19.8(15)   | O11-Cu2-N6 | 175.87(16) |
| N3-Cu1-H9B     | 93.3(15)   | O11-Cu2-N7  | 102.63(16) | N4-Cu1-H9B | 153.4(15)  |
| O16-Cu2-N6     | 110.91(15) | N5-Cu1-H9B  | 107.6(15)  |            |            |

## Table S2 : Photocatalytic activities from reported complexes

| Complex                                                                                                               | Substrate                  | Conditions                 | Dye Degradation<br>rate (%) | Reference       |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|-----------------------------|-----------------|
| [Cd(btec)0.5(bimb)0.5]n                                                                                               | X3B anionic<br>organic dye | aqueous<br>solution, 25° C | 94.1 % in 5 h               | S1              |
| [Ag <sub>7</sub> (4,4'-tmbpt)(HL) <sub>2</sub> (L)(H <sub>2</sub> O)]                                                 | Methyl Blue                | aqueous<br>solution, 25° C | 73 % in 1.5 h               | S2              |
| [Ag(bpy)]4V4O12 · 2H2O                                                                                                | Methyl Blue                | aqueous<br>solution, 25° C | 80% in 3 h                  | \$3             |
| [Cu(hfipbb)(2,2'-<br>bipy)(H2O)2]n                                                                                    | Rhodamine<br>B             | aqueous                    | 43% in 0.5 h                | S4              |
| [Cu(3-dpyh)0.5(1,4-<br>NDC)]·H2O                                                                                      | Methyl Blue                | aqueous                    | 67% in 2h                   | S5              |
| [Cu <sub>3</sub> (L <sup>2</sup> )(NO <sub>3</sub> ) <sub>4</sub> (H <sub>2</sub> O) <sub>4</sub> ] <sub>n</sub> (3). | Rhodamine<br>B             | aqueous<br>solution, 25° C | 73 % in 1 h                 | Present<br>Work |

## References

- [S1] L. Wen, J. Zhao, K. Lv, Y. Wu, K. Deng, X. Leng and D. Li, *Cryst. Growth Des.* 2012, 12, 1603–1612.
- [S2] W. –Q. Kan, B. Liu, J. Yang, Y. –Y. Liu, J. –F. Ma, Cryst. Growth Des. 2012, 12, 2288–2298.
- [S3] H. Lin, P. A. Maggard, *Inorg. Chem.* 2008, **47**, 8044-8052
- [S4] Y. –P. Wu, D. –S. Li, Y. –P. Duan, L. Bai, J. Zhao, Inorg. Chem. Commun. 2013, 36,137–140.
- [S5] X. –L. Wang, J. Luan, F. –F. Sui, H. –Y. Lin, G. –C. Liu, C. Xu, Cryst. Growth Des.
  2013, 13, 3561–3576.