Supplementary Information

Ferromagnetic interlayer interaction in KCo₂Se_{2-x}S_x ($0 \le x \le 2$) and its

chemical origin

Zhongnan Guo^a, Huanhuan Zhang^a, Da Wang^a, Bingling Han^a, Shifeng Jin^b, Wenxia

Yuan*a

^a Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

E-mail:wxyuanwz@163.com; Fax:+86-010-62333033; Tel:+86-010-62332221

^bResearch & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190,

China.

Fig. S1 The Rietveld refinement fits, difference profiles and positions of Bragg peaks of $KCo_2Se_{1.4}S_{0.6}$. The inset shows the crystal structure of $KCo_2Se_{1.4}S_{0.6}$ with the same atom coordinate of Se and S.

Fig. S2 The sample morphology and EDX result of $KCo_2Se_{1.4}S_{0.6}$.

Nominal <i>x</i>	0	0.2	0.6	1	1.4	2					
<i>x</i> from EDX	0	0.196	0.597	1.011	1.560	2					
Space Group	I4/mmm										
a(Å)	3.8672(7)	3.8510(4)	3.8292(6)	3.7931(10)	3.7583(8)	3.7295(4)					
c(Å)	13.695(14)	13.6270(7)	13.5119(11)	13.407(2)	13.2523 (16)	13.063(2)					
$V(Å^3)$	204.812	202.091	198.122	192.895	187.186	181.696					
K	0,0,0										
Со	0,0.5,0.25										
Se/S	0,0,0.3396(2)	0,0,0.3493(1)	0,0,0.3461(1)	0,0,0.3370(3)	0,0,0.3348(3)	0,0,0.3399(3)					
Co-Se/S-Co(°)	73.53(8)	70.76(6)	71.52(7)	73.95(10)	74.73(9)	73.77(8)					
R_{wp}	6.45%	5.18%	5.27%	7.32%	5.58%	4.12%					
χ^2	4.85	1.88	2.29	2.32	3.16	1.84					

Talbe S1. Summary of the EDX results and the Rietveld refinement parameters of $KCo_2Se_{2-x}S_x$.

Fig. S3 Temperature dependent resistivity of $KCo_2Se_{2-x}S_x$.

Fig. S4 (a) XPS Co 2p and (b) K 2p of sample $KCo_2Se_{1.4}S_{0.6}$. The two dashed lines correspond to the binding energies of Co +2 valence¹ and K +1 valence.² BE denotes

the binding energy.

Fig. S5 Total and partial DOS of eight layered cobalt chalcogenides:

(a) four selenides and (b) four sulfides.

Composition	Tvp	a	С	$N(E_F)$	k_F	x	Г
1	e	(Å)	(Å)	(eV ⁻¹)	1		×10 ⁵
KCo ₂ Se _{1.4} S _{0.6}	F	3.8292	13.5119	4.98	2.2836	30.8552	2.9416
TlCo ₂ Se _{1.75} S _{0.25}	AF	3.8402 ³	13.494 ³	4.51	2.2061	29.7689	-0.1615
TlCo ₂ Se ₂	AF	3.8471 ³	13.542 ³	4.41	2.1852	29.5938	-0.8335
KCo ₂ Se ₂	F	3.8672	13.695	5.92	2.3911	32.5805	1.0611
RbCo ₂ Se ₂	F	3.825 ⁴	14.49 ⁴	3.98	2.072	30.0120	0.7641
CsCo ₂ Se ₂	AF	3.824 ⁴	15.314 ⁴	2.99	1.8506	28.3408	-4.3731
TlCo ₂ S ₂	F	3.741 ³	12.956 ³	5.23	2.3907	30.9744	3.0888
KCo ₂ S ₂	F	3.7295	13.063	5.13	2.3754	30.7728	2.8129
RbCo ₂ S ₂	F	3.725 ⁴	13.74 ⁴	4.36	2.2132	30.4088	1.9989
CsCo ₂ S ₂	F	3.7364	14.5 ⁴	2.81	1.8736	28.0116	-4.4358

Table S2. Structure parameters used for the RKKY model and the obtained results:

where $\Gamma = \frac{x \cos x - \sin x}{x^4}$ and $x = 2k_F d$, and for a tetragonal unit cell the k_F

could be obtained from ⁵:

$$k_F = 2(6Z\pi^2 / V)^{\frac{1}{3}}$$

Z is the number of the conduction electrons per Co, and for our calculation we use the DOS per Co at the Fermi level $N(E_F)$ as *Z*.⁶

References

- A. B. Mandale, S. Badrinarayanan, S. K. Date and A. P. B. Sinha, J. Electron Spectrosc. Relat. Phenom., 1984, 33, 61-72.
- 2. W. E. Morgan, J. R. Van Wazer and W. J. Stec, J. Am. Chem. Soc., 1973, 95, 751-755.
- 3. M. Greaney, G. Huan, K. V. Ramanujachary, Z. Teweldmedhin and M. Greenblatt, *Solid State Commun.*, 1991, **79**, 803-810.
- G. Huan, M. Greenblatt and M. Croft, *Eur. J. Solid State Inorg. Chem.*, 1989, 26. 193-220.
- 5. J. Leciejewicz and A. Szytula, J. Magn. Magn. Mater., 1987, 63-64, 190-192.
- 6. An integration of the partial DOS of Co 3d states near the Fermi level was firstly used as the Z in RKKY model, but the results could not reflect the different

ordering types since the integration of different compounds are basically the same. So we turn to use the $N(E_F)$ directly as Z.