Supporting Information for

Luminescent osmium(II) bi-1,2,3-triazol-4-yl complexes: photophysical characterisation and application in lightemitting electrochemical cells

Daniel A. W. Ross,^a Paul A. Scattergood,^a Azin Babaei,^b Antonio Pertegás,^b Henk J. Bolink^{b*}

and Paul I.P. Elliott^a*

^aDepartment of Chemistry, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.

^bInstituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán, 2, 46980 Paterna, Spain.

Figure S1:	UV-Visible electronic absorption spectra for CH ₂ Cl ₂ solutions of 1-4	S3
Figure S2:	Room temperature aerated emission spectra for CH_2Cl_2 solutions of 1-3	S3
Table S1:	Summarised photophysical data for CH ₂ Cl ₂ solutions of 1-4	S4
Figure S3:	Room temperature emission spectrum recorded for $[Os(btz)_3][PF_6]_2$ (Complex 4)	S4
Figure S4:	¹ H NMR for $[Os(\eta^6-C_6H_6)(bpy)Cl][PF_6]$	S 5
Figure S5:	¹³ C NMR for $[Os(\eta^6-C_6H_6)(bpy)Cl][PF_6]$	S6
Figure S6:	¹ H NMR for $[Os(\eta^6-C_6H_6)(btz)Cl][PF_6]$	S7
Figure S7:	¹³ C NMR for $[Os(\eta^6-C_6H_6)(btz)Cl][PF_6]$	S8
Figure S8:	¹ H NMR for $[Os(bpy)_3][PF_6]_2$ (Complex 1)	S9
Figure S9:	¹³ C NMR for $[Os(bpy)_3][PF_6]_2$ (Complex 1)	S10
Figure S10:	¹ H NMR for $[Os(bpy)_2(btz)][PF_6]_2$ (Complex 2)	S11
Figure S11:	¹³ C NMR for $[Os(bpy)_2(btz)][PF_6]_2$ (Complex 2)	S12
Figure S12:	¹ H NMR for $[Os(bpy)(btz)_2][PF_6]_2$ (Complex 3)	S13
Figure S13:	¹³ C NMR for $[Os(bpy)(btz)_2][PF_6]_2$ (Complex 3)	S14

Figure S14: ¹ H NMR for $[Os(btz)_3][PF_6]_2$ (Complex 4)	S15
Figure S15 : 13 C NMR for $[Os(btz)_3][PF_6]_2$ (Complex 4)	S16
Optimised ground state geometry for complex 1	S17
Optimised ground state geometry for complex 2	S18
Optimised ground state geometry for complex 3	S19
Optimised ground state geometry for complex 4	S20
Table S2: Summary of TDDFT vertical excitation data for complexes 1 to 4	S22
Figure S16: TDDFT spectra for complexes 1 to 4	S23

Figure S1: UV-Visible electronic absorption spectra for CH₂Cl₂ solutions of complexes 1-4.

Figure S2: Normalised emission spectra recorded for aerated CH_2Cl_2 solutions of complexes 1-3 at room temperature.

Complex	$\lambda_{(abs)}$ / $\lambda_{(em)}$ / $\tau_{(aerated)}$ /		au _(aerated) /	$ au_{(degassed)}$ /	$\Phi_{(aerated)}$ /	$\Phi_{(degassed)}$ /
	nm	nm <i>a</i>	ns	ns	% ^b	% ^b
1	648, 585, 480, 449,					
	437, 390, 369, 329,	717	73	90	1.1	1.4
	291					
2	634, 578, 467, 438,					
	427, 387, 359, 325,	705	95	131	1.5	2.0
	291					
3	613, 568, 450, 425,					
	392, 324, 290	697	123	175	1.9	2.8
4	418, 388, 338,					
	316, 292	-	-	-	-	-

Table S1: Summarised photophysical data for room temperature CH₂Cl₂ solutions of 1-4.

 $a \lambda^{ex} = 600$ nm; b Relative to $[Ru(bpy)_3][PF_6]_2 \Phi_{em} = 0.018$ in aerated MeCN

Figure S3: Normalised emission spectrum recorded for $[Os(btz)_3][PF_6]_2(4)$ in aerated MeCN at room temperature ($\lambda^{ex} = 365$ nm). Weak emission is discernible above the noise level after subtraction of solvent Raman scattering signals.

Figure S4: ¹H NMR (400 MHz, d₃-MeCN) of [Os(η⁶-C₆H₆)(bpy)Cl][PF₆]

Figure S5: ¹³C NMR (101 MHz, d₃-MeCN) of [Os(η⁶-C₆H₆)(bpy)Cl][PF₆]

Figure S6: ¹H NMR (400 MHz, d₃-MeCN) of [Os(η⁶-C₆H₆)(btz)Cl][PF₆]

Figure S7: ¹³C NMR (101 MHz, d₃-MeCN) of [Os(η⁶-C₆H₆)(btz)Cl][PF₆]

Figure S8: ¹H NMR (400 MHz, d₃-MeCN) of [Os(bpy)₃][PF₆]₂ (Complex 1)

Figure S9: ¹³C NMR (101 MHz, d₃-MeCN) of [Os(bpy)₃][PF₆]₂ (Complex 1)

Figure S10: ¹H NMR (400 MHz, d₃-MeCN) of [Os(bpy)₂(btz)][PF₆]₂ (Complex **2**)

Figure S11: ¹³C NMR (101 MHz, d₃-MeCN) of [Os(bpy)₂(btz)][PF₆]₂ (Complex **2**)

Figure S12: ¹H NMR (400 MHz, d₃-MeCN) of [Os(bpy)(btz)₂][PF₆]₂ (Complex 3)

Figure S13: ¹³C NMR (101 MHz, d₃-MeCN) of [Os(bpy)(btz)₂][PF₆]₂ (Complex 3)

Figure S14: ¹H NMR (400 MHz, d₃-MeCN) of [Os(btz)₃][PF₆]₂ (Complex 4)

Figure S15: ¹³C NMR (101 MHz, d₃-MeCN) of [Os(btz)₃][PF₆]₂ (Complex 4)

Optimised ground state geometry of the dication [Os(bpy)]²⁺(Complex 1)

61			
geometry			
С	-0.43206863	4.12929253	-1.19301751
С	0.39846474	4.31586787	-2.28954884
С	1.13802543	3.23367231	-2.75940923
С	1.01952871	2.01232390	-2.11580824
Ν	0.21440503	1.81875589	-1.05005516
С	-0.51351054	2.87583239	-0.58371466
С	-1.36652433	2.58306558	0.57910558
Ν	-1.28889403	1.30285576	1.04792002
С	-2.04307580	0.96127670	2.11378176
С	-2.88935204	1.85147883	2.75512098
С	-2.97325861	3.15864878	2.28275443
С	-2.20337631	3.52132615	1.18606714
Ν	1.46711677	-1.09965440	-1.04752256
С	1.23006240	-1.89895263	-2.10886326
С	2.22725792	-2.61537609	-2.75096911
С	3.53519795	-2.51361978	-2.28427156
С	3.79108031	-1.69563042	-1.19230148
С	2.74747889	-0.99540947	-0.58432331
С	2.92275479	-0.10452308	0.57373347
С	4.15494806	0.15415822	1.17691453
С	4.22795838	1.00763960	2.26925985
С	3.05487512	1.59076836	2.74117456
С	1.85951916	1.29972998	2.10369412
N	1.77615885	0.47059290	1.04204397
Os	0.00081754	-0.00009026	0.00066698
N	-1.68680001	-0.72542405	-1.04034037
С	-2.23573366	-1.88399261	-0.57008407
С	-1.54925463	-2.47549682	0.58938268
С	-1.93981396	-3.66906946	1.19921464
С	-1.23471449	-4.15363314	2.29237920
С	-0.14226264	-3.42683315	2.75839475
С	0.20178726	-2.24916826	2.11443705
N	-0.47696970	-1.76767498	1.05190758
С	-2.26286252	-0.12576737	-2.10339230
С	-3.38342239	-0.63423872	-2.74038038
С	-3.94831665	-1.81539765	-2.26644702
С	-3.36539815	-2.44057830	-1.17267718
Н	-1.01218711	4.96000267	-0.81382707
Н	0.46707350	5.28637970	-2.76666009
Н	1.80031887	3.32818204	-3.61124894
Н	1.57593716	1.14758791	-2.45142402
Н	-1.94880680	-0.06201884	2.45138710
Н	-3.46983669	1.51946926	3.60717897
Н	-3.62557346	3.88170343	2.75805888
Н	-2.25800568	4.53234241	0.80492871
Н	0.20229587	-1.95011071	-2.44214287
Н	1.97625944	-3.24040528	-3.59922295
Н	4.34043424	-3.06061462	-2.76032430
Н	4.80132763	-1.60666059	-0.81561815
Н	5.05708604	-0.30585467	0.79620551
Н	5.18125000	1.21345156	2.74160722
Н	3.05926766	2.26365559	3.58993826
Н	0.92682174	1.73126917	2.44110398
Н	-2.78998954	-4.22231995	0.82302426

Н	-1.53192743	-5.07986814	2.76986117
Н	0.44018776	-3.76287523	3.60752478
Н	1.04250565	-1.65543910	2.44711529
Н	-1.79397641	0.78814541	-2.44235632
Н	-3.80110989	-0.10856122	-3.59031890
Н	-4.82579768	-2.24152670	-2.73833367
Н	-3.79270369	-3.35800133	-0.79038426

Optimised ground state geometry of the dication [Os(bpy)₂(btz)]²⁺(Complex 2)

61			
geometry			
С	3.42150948	-3.04135894	-1.86041416
С	2.76498902	-3.29962717	-0.66504864
С	1.83042104	-2.38854153	-0.17188577
N	1.54340025	-1.23957671	-0.84909976
С	2.18752794	-0.99790963	-2.00783430
С	3.12604814	-1.86532984	-2.54331888
С	1.25774844	-3.67072572	1.93411630
С	0.53407553	-3.75134288	3.11574567
С	-0.34567216	-2.71947612	3.43328803
С	-0.47084086	-1.65457176	2.55590453
N	0.22432267	-1.56858753	1.40269175
С	1.09358547	-2.57250385	1.08791401
С	0.46847162	3.75831096	-3.11628899
С	1.19528491	3.68915894	-1.93586379
С	1.05038428	2.58819019	-1.08970650
N	0.19701987	1.57037100	-1.40334013
С	-0.50116811	1.64525519	-2.55553500
С	-0.39475959	2.71228043	-3.43279891
С	2.71281352	3.34186381	0.66058852
С	3.37549848	3.09402278	1.85476678
С	3.10032696	1.91322426	2.53790123
С	2.17506893	1.03081606	2.00382902
N	1.52505996	1.26226007	0.84628788
С	1.79225286	2.41587236	0.16882855
N	-1.67680336	-2.00556807	-1.67666873
N	-2.98337696	-2.23468837	-1.84322467
С	-3.74160681	-1.38134655	-1.11314393
С	-2.83558189	-0.57588855	-0.46103398
N	-1.58168480	-1.00041188	-0.84352945
N	-1.70612674	1.98494323	1.67016271
N	-3.01571955	2.20552381	1.82397163
С	-3.76142566	1.33565173	1.10032350
С	-2.84382600	0.53315215	0.46106080
N	-1.59627055	0.97425611	0.84569277
С	-3.42808868	-3.34369345	-2.69158814
С	-3.47847299	3.26553079	2.72391702
Os	0.07374002	-0.00022847	-0.00023120
Н	4.14922299	-3.74372385	-2.24944607
Н	2.98285247	-4.20844122	-0.12013184
Н	1.92761930	-0.07694023	-2.51122866
Н	3.61185493	-1.61691728	-3.47891935
Н	1.94981437	-4.46086494	1.67520729
Н	0.65761496	-4.60073012	3.77727306
Н	-0.92769993	-2.73343013	4.34667041
H	-1.13665984	-0.82835154	2.76670163
H	0.57703243	4.60981804	-3.77771265
Н	1.87481736	4.49039044	-1.67784359

Н	-1.15364738	0.80830081	-2.76574741
Н	-0.97838177	2.71694550	-4.34525155
Н	2.91501169	4.25417181	0.11546763
Н	4.09242782	3.80799655	2.24268932
Н	3.59169797	1.67253158	3.47260913
Н	1.93103567	0.10565447	2.50747822
Н	-4.81878433	-1.41651470	-1.11560236
Н	-4.83893556	1.36003411	1.09679985
Н	-4.31107037	-3.03762833	-3.24989440
Н	-3.65857507	-4.21392194	-2.07675641
Н	-2.62148618	-3.58176352	-3.38003719
Н	-4.26008358	3.84271228	2.23232189
Н	-2.62902278	3.90720757	2.94206779
Н	-3.86029769	2.83095286	3.64781736

Optimised ground state geometry of the dication [Os(bpy)(btz)₂]²⁺(Complex 3)

61			
geometry			
С	-0.44174366	3.99580670	2.86488723
С	-0.23383429	4.09262186	1.49596826
С	-0.13464499	2.93537900	0.72308171
Ν	-0.23996533	1.70091633	1.29217686
С	-0.43246925	1.61674744	2.62264334
С	-0.54036862	2.73145696	3.43841338
С	0.18271455	4.09047386	-1.50569006
С	0.39192466	3.99193529	-2.87428893
С	0.50672868	2.72711620	-3.44375730
С	0.41301727	1.61374016	-2.62442117
N	0.21935971	1.69970655	-1.29423825
С	0.09826555	2.93454025	-0.72910003
Ν	-0.08850271	-2.19420263	-2.19845925
Ν	0.80449468	-3.00917761	-2.77002606
С	2.05391619	-2.80642158	-2.28515368
С	1.91261928	-1.79867216	-1.35889426
Ν	0.57783868	-1.45677093	-1.34651284
Ν	2.89941702	0.54288061	1.06989935
Ν	4.10594542	0.01063572	0.85298228
С	4.06434793	-0.96786573	-0.08341030
С	2.74235898	-1.03772130	-0.45830581
N	2.07172189	-0.09099762	0.28227321
С	0.36486666	-3.99952163	-3.75499496
С	5.27463041	0.54496817	1.55483253
N	0.11734309	-2.18592945	2.20881568
Ν	-0.76521766	-3.01048750	2.78285933
С	-2.01710180	-2.82514252	2.29734769
С	-1.88859145	-1.81855859	1.36797617
Ν	-0.55827577	-1.45971121	1.35456066
Ν	-2.90495941	0.50235872	-1.06841159
Ν	-4.10460570	-0.04460402	-0.84990264
С	-4.05060581	-1.01946009	0.08964983
С	-2.72788219	-1.07116334	0.46489878
Ν	-2.06932746	-0.11832366	-0.27866072
С	-0.31329998	-3.99149233	3.77161977
С	-5.27993921	0.47250822	-1.55355181
Os	0.00011756	0.06370424	0.00157611
Н	-0.51960571	4.89006911	3.47201095
Н	-0.14431530	5.06705018	1.03459881
Н	-0.48806764	0.61591955	3.02848739

Н	-0.69448650	2.60365915	4.50283279
Н	0.08074012	5.06515463	-1.04744763
Н	0.45839915	4.88516962	-3.48427385
Н	0.66254331	2.59788571	-4.50775695
Н	0.48141753	0.61240885	-3.02705582
Н	2.90603185	-3.37187722	-2.62504290
Н	4.94185840	-1.51142680	-0.39274668
Н	1.08265959	-4.03933488	-4.57268893
Н	-0.60459037	-3.68525901	-4.13260998
Н	0.27926081	-4.98047100	-3.28697072
Н	5.77228030	1.29284513	0.93701809
Н	5.96108367	-0.26964032	1.77851075
Н	4.93084926	1.00016917	2.48002813
Н	-2.86196214	-3.40035758	2.63897739
Н	-4.92112087	-1.57322299	0.40064720
Н	-1.02533511	-4.03020314	4.59442195
Н	0.65668778	-3.66867866	4.14052308
Н	-0.22471200	-4.97501818	3.30961580
Н	-5.95712055	-0.35116788	-1.77219865
Н	-4.94228302	0.92667730	-2.48151248
Н	-5.78567277	1.21787874	-0.93928179

Optimised ground state geometry of the dication [Os(btz)₃]²⁺(Complex 4)

61			
geometry			
N	2.34852699	0.06761760	2.06707449
N	3.42931777	0.82791492	2.26737225
С	3.54944825	1.79254126	1.32243967
С	2.46702808	1.60792597	0.49434203
Ν	1.76142441	0.53957297	0.99993444
Ν	0.27632095	2.23126785	-2.18300546
Ν	1.16203112	3.19122185	-2.46635645
С	2.17814629	3.22052897	-1.56942455
С	1.89222419	2.20814389	-0.68354164
Ν	0.71722275	1.63140040	-1.10970179
С	4.33585678	0.52822604	3.37609896
С	0.93186579	4.08253026	-3.60367914
N	-1.11670469	2.02047728	2.11433111
N	-2.30259040	2.57862670	2.37592725
С	-3.24924149	2.19183301	1.48589330
С	-2.59531136	1.33851452	0.62816378
N	-1.29105504	1.26601121	1.06242001
N	-2.19144732	-0.90181040	-2.05025703
N	-3.48466322	-0.63193605	-2.25327909
С	-3.96472766	0.24990790	-1.34234878
С	-2.89229125	0.53116018	-0.52861179
N	-1.82981019	-0.20006502	-1.00962671
С	-2.43479636	3.52294566	3.48579288
С	-4.18316879	-1.22570463	-3.39370972
N	1.75073163	-1.46314098	-2.14618058
N	2.13452178	-2.72296050	-2.37387418
С	1.66928963	-3.57124804	-1.42419326
С	0.95160450	-2.77367592	-0.56379610
N	1.03101024	-1.49077309	-1.05651456
N	-1.08536821	-1.96187175	2.18353327
N	-0.97900909	-3.26994628	2.43666285
C	-0.21266652	-3.90141544	1.51369865

С	0.16836963	-2.91125669	0.63859965
N	-0.39256129	-1.74127399	1.09840350
С	2.99906437	-3.02668671	-3.51463620
С	-1.60423702	-3.83422913	3.63320536
Os	-0.00065172	0.00078198	-0.00251381
Н	4.35983195	2.50264576	1.31903579
Н	2.98824678	3.92798283	-1.63446119
Н	4.70706198	1.46045055	3.79831593
Н	5.17050062	-0.07945635	3.02534459
Н	3.77336663	-0.01672069	4.12975098
Н	1.88353129	4.30686203	-4.08233979
Н	0.45782912	5.00533323	-3.26802810
Н	0.28136701	3.56735707	-4.30567518
Н	-4.26797303	2.53924182	1.53585628
Н	-4.98705836	0.59023252	-1.34827631
Н	-2.36503437	4.54709348	3.11812990
Н	-1.62878311	3.32703398	4.18811289
Н	-3.39435512	3.36908169	3.97648242
Н	-5.19393794	-1.49885919	-3.09519943
Н	-3.63556697	-2.11523292	-3.69391859
Н	-4.21760590	-0.51730937	-4.22176163
Н	1.87656607	-4.62850630	-1.43986551
Н	-0.01022619	-4.95895298	1.55425620
Н	2.69659960	-3.97655215	-3.95221580
Н	4.03982534	-3.07959855	-3.19379344
Н	2.87801297	-2.23163927	-4.24575677
Н	-2.01725148	-4.81337889	3.39650411
Н	-2.40213682	-3.16337755	3.94075347
Н	-0.86890674	-3.92331111	4.43323060

Complex	Transition	Wavelength / nm	Composition	Character
	S	$\frac{(\text{Energy / ev, })}{543(2.28, 0.0023)}$		1ML CT
1	51 S	343(2.26, 0.0023) 482(2.57, 0.022)		
	54 S	462(2.37, 0.022)	HOMO 1 \rightarrow LUMO 1 \rightarrow LUMO 2	
	36	445 (2.80, 0.11)	HOMO $2 \rightarrow LUMO + 1$, HOMO $2 \rightarrow LUMO + 2$,	MLCI
	C	220(2.77, 0.10)	HOMO-2 \rightarrow LUMO+7 HOMO-2 \rightarrow LUMO+2	INI CT
	S ₂₂	329 (3.77, 0.10)	HOMO-1 \rightarrow LUMO+7, HOMO-1 \rightarrow LUMO+5 &	MLCI
	C	272(45(-0.40))	HOMO-2 \rightarrow LUMO+4	
	S ₃₈	272 (4.56, 0.46)	HOMO-4→LUMO+1 & HOMO-3→LUMO+2	LC
2	S.	518 (2 39 0 0022)	HOMO	¹ MLCT(hpv)
-	S_1 S_5	438 (2.83, 0.13)	HOMO-2 \rightarrow LUMO & HOMO-1 \rightarrow LUMO+1	1 MLCT(bpy)
	S ₅	417(2.97, 0.047)	HOMO-2 \rightarrow LIMO+1	1 MLCT(bpy)
	S ₁₀	328 (3.78, 0.090)	HOMO \rightarrow LIMO $+7$ & HOMO $-1 \rightarrow$ LIMO $+3$	1 MI CT(bpy&btz)
	S18 S22	314(3.95, 0.092)	HOMO-2 \rightarrow LUMO+6 & HOMO-2 \rightarrow LUMO+8	1 MI CT(bpy&btz)
	S23 S25	272 (4 55 0 54)	HOMO-4-JUMO	¹ LC(bpy)
	233	2/2 (1000, 000 1)		
3	S_1	493 (2.51, 0.0014)	HOMO→LUMO	¹ MLCT(bpy)
	S_3	419 (2.96, 0.10)	HOMO-2→LUMO	¹ MLCT(bpy)
	S_{17}	318 (3.90, 0.99)	HOMO-1→LUMO+3 & HOMO→LUMO+6	¹ MLCT(bpy&btz)
	S_{26}	299 (4.14, 0.14)	HOMO-2→LUMO+7 & HOMO-1→LUMO+8	¹ MLCT(btz)
	S ₃₂	273 (4.55, 0.32)	HOMO-3→LUMO & HOMO-5→LUMO	¹ LC(bpy)
	~			
4	\mathbf{S}_1	374 (3.31, 0.011)	HOMO→LUMO	¹ MLCT
	S_5	344 (3.60, 0.018)	HOMO-1→LUMO	¹ MLCT
	S ₁₃	312 (3.98, 0.084)	HOMO→LUMO+8, HOMO-1→LUMO+6 & HOMO-1→LUMO+3	¹ MLCT
	S ₂₂	300 (4.13, 0.13)	HOMO-1→LUMO+6	¹ MLCT
	S ₂₅	295 (4.20, 0.091)	HOMO-1→LUMO+8, HOMO-2→LUMO+7 & HOMO→LUMO+6	¹ MLCT

 Table S2. Summary of TDDFT vertical excitation data for complexes 1 to 4.

Figure S16: Calculated TDDFT optical absorption spectra for complexes **1** to **4** overlaid with experimental UV-Visible absorption data in acetonitrile solutions.