Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Supporting Information:

Reaction of Stannylene Phosphorus Lewis Pairs with Dichlorides of Germanium, Tin and Lead – Formation of Base stabilized Stannyl Stannylenes/Germylenes and Redox Reaction with PbCl₂

Kilian M. Krebs, Jakob J. Maudrich, Lars Wesemann*

Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen

Table of contents

1	CRY	STALLOGRAPHIC DETAILS	2
	1.1 1.2	CRYSTAL STRUCTURES OF COMPOUNDS 1-5 CRYSTAL STRUCTURE REFINEMENT TABLES	2 3
2	ADE	DITIONAL NMR DATA	4
	2.1	³¹ P- ³¹ P EXSY NMR SPECTRUM FOR COMPOUND 4 (TOL-D8)	4
	2.2	DT ³¹ P NMR SPECTRA FOR COMPOUND 4 (TOL-D8)	4
	2.3	¹ H, ¹³ C, ¹¹⁹ SN AND ³¹ P NMR SPECTRA FOR COMPOUND 1 (C ₆ D ₆)	5
	2.4	¹ H, ¹³ C, ¹¹⁹ SN AND ³¹ P NMR SPECTRA FOR COMPOUND 2 (C ₆ D ₆)	6
	2.5	¹ H, ¹³ C, ¹¹⁹ SN AND ³¹ P NMR SPECTRA FOR COMPOUND 3 (C ₆ D ₆)	7
	2.6	¹ H, ¹³ C, ¹¹⁹ SN AND ³¹ P NMR SPECTRA FOR COMPOUND 4 (C ₆ D ₆)	8
	2.7	¹ H, ¹³ C, ¹¹⁹ SN AND ³¹ P NMR SPECTRA FOR COMPOUND 5 (C ₆ D ₆)	9
	2.8	EXAMPLARY DETERMINATION OF THE COUPLING PATTERN IN THE ¹¹⁹ SN NMR SPECTRA (COMPOUND 2):	10

1 Crystallographic Details

1.1 Crystal structures of compounds 1-4

Hydrogen atoms and isopropyl moieties are omitted for clarity.

1.2 Crystal Structure Refinement Tables

Table	S1.	Crystal	structure	e refinem	ent table	of com	pounds	1 -	5.

	1 × 2 eq toluene	2 × 2 eq toluene	3	4	5 × 1 eq hexane
Empirical formula	C ₆₈ H ₈₀ Cl ₂ GePSn	$C_{68}H_{79}Cl_2PSn_2$	C ₅₄ H ₇₅ Cl ₂ GePSn	$C_{54}H_{75}Cl_2PSn_2$	$C_{60}H_{75}Cl_2PSn$
M _r /gmol ⁻¹	1190.47	1235.56	1017.29	1063.39	1016.76
λ/Å	0.71073	0.71073	0.71073	0.71073	0.71073
<i>Т /</i> К	100(2)	100(2)	100(2)	100(2)	100(2)
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group	Pna2 ₁	Pna21	Pbca	Pbca	Pbca
Z	4	4	8	8	8
a/Å	29.0011(11)	29.1761(10)	16.0516(4)	16.0688(4)	14.7617(3)
b/Å	19.7482(7)	19.7911(7)	24.7557(6)	24.6470(6)	24.9093(5)
c/Å	10.5468(4)	10.5653(3)	25.9550(7)	26.0868(6)	29.0690(6)
α/°	90.00	90.00	90.00	90.00	90.00
βl°	90.00	90.00	90.00	90.00	90.00
γl°	90.00	90.00	90.00	90.00	90.00
V/Å ³	6040.4(4)	6100.7(3)	10313.7(5)	10331.6(4)	10688.8(4)
<i>D</i> _c / g cm ⁻³	1.309	1.345	1.310	1.367	1.264
μ/mm^{-1}	1.065	0.972	1.235	1.135	0.645
F(000)	2476	2544	4240	4384	4272
Crystal size / mm	0.33 × 0.29 × 0.12	0.34 × 0.28 × 0.17	0.23 × 0.13 × 0.12	0.37 × 0.19 × 0.18	0.25 × 0.21 × 0.16
θ range / °	2.06 - 28.33	2.19 - 28.30	2.60 - 28.11	2.60 - 28.28	2.56 - 28.26
Limiting indices	$-38 \le h \le 38$	$-37 \leq h \leq 38$	-19 ≤ <i>h</i> ≤ 19	-19 ≤ <i>h</i> ≤ 20	-15 ≤ <i>h</i> ≤ 19
	$-25 \le k \le 26$	$-26 \le k \le 23$	$-30 \le k \le 30$	$-29 \le k \le 30$	$-33 \le k \le 33$
	-14 ≤ <i>I</i> ≤ 13	-14 ≤ / ≤ 14	-32 ≤ / ≤ 32	-32 ≤ / ≤ 32	-37 ≤ / ≤ 38
Reflects. collect.	82847	64733	74213	158517	91447
Indepdnt Reflects	14658	14893	10523	10546	13265
R _{int}	0.0286	0.0306	0.0481	0.0396	0.0326
Completeness	99.8	99.9	99.8	99.9	1.00
Absorp. Corr.	numerical	numerical	numerical	numerical	numerical
Trans.(max., min.)	0.88, 1.00	0.88, 1.00	0.90, 1.00	0.80, 0.93	0.94, 1.00
Parameters/restraints	693/1	702/43	544/0	544(0	590/39
$R_1, \omega R_2 [I > 2\sigma(I)]$	0.0276, 0.0623	0.0257, 0.0485	0.0308, 0.0606	0.0226, 0.0454	0.0360, 0.0782
$R_1, \omega R_2$ (all data)	0.0304, 0.0633	0.0294, 0.0494	0.0496, 0.0663	0.0300, 0.0481	0.0520, 0.0858
GooF on F ²	1.072	1.111	1.042	1.047	1.033
$\Delta ho_{max,min}$ / e·Å ⁻³	0.986, -0.811	0.750, -0.528	0.642, -0.395	0.608, -0.431	1.431, -1.154
Flack parameter	0.011(6)	-0.004(9)			
CCDC	1457389	1457390	1457387	1457388	1457391

2 Additional NMR Data

2.1 ³¹P-³¹P EXSY NMR spectrum for compound **4** (Tol-d8)

2.2 dT ³¹P NMR spectra for compound **4** (Tol-d8)

2.3 ¹H, ¹³C, ¹¹⁹Sn and ³¹P NMR spectra for compound **1** (C₆D₆)

2.4 ¹H, ¹³C, ¹¹⁹Sn and ³¹P NMR spectra for compound **2** (C₆D₆)

2.5 ¹H, ¹³C, ¹¹⁹Sn and ³¹P NMR spectra for compound **3** (C₆D₆)

2.6 ¹H, ¹³C, ¹¹⁹Sn and ³¹P NMR spectra for compound **4** (C₆D₆)

2.7 ¹H, ¹³C, ¹¹⁹Sn and ³¹P NMR spectra for compound **5** (C_6D_6)

2.8 Examplary determination of the coupling pattern in the ¹¹⁹Sn NMR spectra (compound **2**):

