Electronic Supplementary Information

for

Aluminum complexes containing salicylbenzoxazole ligands and their application in the ring-opening polymerization of *rac*-lactide and *ɛ*-caprolactone

Pattarawut Sumrit,† Pitak Chuawong,§ Tanin Nanok,‡

Tanwawan Duangthongyou,[‡] Pimpa Homnirun^{*,†}

[†]Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and [§]Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and Special Research Unit for Advanced Magnetic Resonance (AMR), and [‡]Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

*E-mail: fscipph@ku.ac.th

Synthesis of 2-hydroxy-3-(1,1-diphenylethyl)-5-methylbenzaldehyde

Fig. S1 Synthesis of 2-hydroxy-3-(1,1-diphenylethyl)-5-methylbenzaldehyde.

Synthesis of 1,1-diphenylethanol (I)

To a stirred solution of benzophenone (10.00 g, 54.86 mmol) in diethyl ether (300 mL) was slowly added methylmagnesium iodide (21.95 mL of a 3.0 M solution in diethyl ether, 65.83 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 15 h and a saturated solution of ammonium chloride (50 mL) was then added. The organic phase was separated and the volatiles were removed under reduced pressure to provide a brown solid which was purified by column chromatography (hexane). The product was obtained in 10.12 g (93%).

¹H NMR (500.13 MHz, CDCl₃, 300 K): δ 7.45–7.42 (m, 4H, Ar*H*), 7.36–7.32 (m, 4H, Ar*H*), 7.28–7.24 (m, 2H, Ar*H*), 2.45 (s, 1H, O*H*), 2.02 (s, 3H, C*H*₃).

¹³C NMR (125.77 MHz, CDCl₃, 300 K): δ 147.9 (Ar*C*), 128.0 (Ar*C*H), 126.8 (Ar*C*H), 125.8 (Ar*C*H), 76.1 (*C*), 30.7 (*C*H₃).

Synthesis of 1,1-diphenylethene (II)

To a stirred solution of 1,1-diphenylethanol (I) (15.00 g, 75.66 mmol) in ethanol (100 mL) was added slowly H_2SO_4 (10.00 mL). The reaction mixture was stirred at room temperature for 24 h. After removal of the volatiles, the product was extracted with dichloromethane. The organic phase was concentrated and purified by column chromatography (hexane). A colorless oil was obtained in 13.00 g (95%).

¹H NMR (500.13 MHz, CDCl₃, 300 K): δ 7.42–7.38 (m, 10H, Ar*H*), 5.53 (s, 2H, C*H*₂). ¹³C NMR (125.77 MHz, CDCl₃, 300 K): δ 150.0 (*C*), 141.5 (Ar*C*), 128.2 (Ar*C*H), 128.1 (Ar*C*H), 127.7 (Ar*C*H), 114.2 (*C*H₂).

Synthesis of 2-(1,1-diphenylethyl)-4-methylphenol (III)

To a stirred solution of 1,1-diphenylethene (II) (13.00 g, 72.12 mmol) in toluene (100 mL) was added *p*-cresol (7.80 g, 72.12 mmol) and H_2SO_4 (5.00 mL). The reaction mixture was stirred at room temperature for 24 h. To this reaction, a saturated solution of NaHCO₃ (50 mL) was then added. The organic phase was separated and dried under vacuum to provide a brown oil which was then purified by column chromatography (hexane). The white solid was obtained in 14.00 g (67%).

¹H NMR (500.13 MHz, CDCl₃, 300 K): δ 7.36–7.32 (m, 4H, Ar*H*), 7.29–7.26 (m, 5H, Ar*H*), 7.02 (dd, ³*J*_{HH} = 8.0 Hz, ⁴*J*_{HH} = 2.1 Hz, 1H, Ar*H*), 6.76 (d, ⁴*J*_{HH} = 2.0 Hz, 1H, Ar*H*), 6.76-6.73 (m, 2H, Ar*H*), 4.37 (s, 1H, O*H*), 2.22 (s, 3H, C*H*₃), 2.21 (s, 3H, C*H*₃).

¹³C NMR (125.77 MHz, CDCl₃, 300 K): δ 151.8 (Ar*C*), 146.4 (Ar*C*), 134.1 (Ar*C*), 129.7 (Ar*C*H), 129.6 (Ar*C*), 128.8 (Ar*C*H), 128.5 (Ar*C*H), 128.2 (Ar*C*H), 126.7 (Ar*C*H), 117.8 (Ar*C*H), 51.0 (*C*), 29.3 (*C*H₃), 20.8 (*C*H₃).

Synthesis of 2-hydroxy-3-(1,1-diphenylethyl)-5-methylbenzaldehyde (IV)

To a stirred solution of 2-(1,1-diphenylethyl)-4-methylphenol (III) (10.00 g, 34.68 mmol) in THF (100 mL) was slowly added ethylmagnesium bromide (17.34 mL of a 3.0 M solution in diethyl ether, 52.05 mmol) at 0 °C. After the reaction mixture was stirred overnight at room temperature, the volatiles were removed under reduced pressure and then toluene (200 mL) was added. To this solution was then added a mixture of triethylamine (7.24 mL, 52.05 mmol) and paraformaldehyde (2.60 g, 86.70 mmol) in toluene (40 mL). The reaction mixture was stirred at 110 °C for 2 h. Hydrochloric acid (2.0 M, 25 mL) was then added to the reaction mixture. The product was extracted with diethyl ether (3×100 mL) and the organic phase was separated. The combined organic phase was dried over MgSO₄, filtered and evaporated under reduced pressure to provide a yellow oil. The crude product was purified by column chromatography (hexane:ethyl acetate = 80:20). The product was obtained as a white solid in 7.07 g (64%).

¹H NMR (500.13 MHz, CDCl₃, 300 K): δ 11.44 (s, 1H, O*H*), 9.85 (s, 1H, ArC*H*O), 7.33–7.24 (m, 7H, Ar*H*), 7.17–7.15 (m, 4H, Ar*H*), 6.76 (d, ⁴*J*_{HH} = 2.2 Hz, 1H, Ar*H*), 2.35 (s, 3H, C*H*₃), 2.21 (s, 3H, C*H*₃).

¹³C NMR (125.77 MHz, CDCl₃, 300 K): δ 196.7 (Ar*C*HO), 196.6 (Ar*C*), 158.4 (Ar*C*), 147.6 (Ar*C*), 138.7 (Ar*C*H), 136.9 (Ar*C*), 132.3 (Ar*C*H), 128.2 (Ar*C*H), 127.9 (Ar*C*H), 126.0 (Ar*C*H), 120.6 (Ar*C*), 51.5 (*C*), 27.4 (*C*H₃), 20.5 (*C*H₃).

Synthesis of 2-{[(2'-hydroxyphenyl)imino]methyl}phenol (1)

To a stirred solution of 2-aminophenol (6.00 g, 54.98 mmol) in ethanol (100 mL) was slowly added 2hydroxybenzaldehyde (6.71 g, 54.98 mmol). Formic acid (2-4 drops) was added as a catalyst. The reaction mixture was then refluxed at 90 °C for 2 h. After cooling to room temperature, red crystals formed. The crystals were collected by filtration and dried under vacuum. Yield: 11.12 g, 95%. ¹H NMR (500.13 MHz, [D₆]DMSO, 300 K): δ 13.82 (br s, 1H, O*H*), 9.75 (br s, 1H, O*H*), 8.97 (s, 1H, C*H*=N), 7.62 (dd, ⁴*J*_{HH} = 1.5 Hz, ³*J*_{HH} = 7.8 Hz, 1H, Ar*H*), 7.40–7.35 (m, 2H, Ar*H*), 7.14 (dt, ⁴*J*_{HH} = 1.5 Hz, ³*J*_{HH} = 7.7 Hz, 1H, Ar*H*), 6.99 (d, ³*J*_{HH} = 8.0 Hz, 1H, Ar*H*), 6.96–6.94 (m, 2H, Ar*H*), 6.89 (dt, ⁴*J*_{HH} = 1.2 Hz, ³*J*_{HH} = 7.6 Hz, 1H, Ar*H*).

¹³C NMR (125.77 MHz, [D₆]DMSO, 300 K): δ 162.4 (*C*H=N), 161.4 (Ar*C*), 151.8 (Ar*C*), 135.7 (Ar*C*), 133.5 (Ar*C*H), 133.0 (Ar*C*H), 128.7 (Ar*C*H), 120.3 (Ar*C*H), 120.2 (Ar*C*), 119.4 (Ar*C*H), 117.4 (Ar*C*H), 117.2 (Ar*C*H).

Synthesis of 2,4-dimethyl-6-{[(2'-hydroxyphenyl)imino]methyl}phenol (2)

To a stirred solution of 2-aminophenol (5.00 g, 45.82 mmol) in ethanol (100 mL) was slowly added 3,5-dimethyl-2-hydroxybenzaldehyde (6.88 g, 45.82 mmol). Formic acid (2-4 drops) was added as a catalyst. The reaction mixture was then refluxed at 90 °C for 2 h. After cooling to room temperature, red crystals formed. The crystals were collected by filtration and dried under vacuum. Yield: 7.90 g, 71%.

¹H NMR (500.13 MHz, [D₆]DMSO, 300 K): δ 13.90 (s, 1H, O*H*), 9.73 (s, 1H, O*H*), 8.88 (s, 1H, C*H*=N) 7.34 (d, ³*J*_{HH} = 7.6 Hz, 1H, Ar*H*), 7.21 (s, 1H, Ar*H*), 7.12 (t, ³*J*_{HH} = 7.5 Hz, 1H, Ar*H*), 7.10 (s, 1H, Ar*H*), 6.97 (d, ³*J*_{HH} = 8.0 Hz, 1H, Ar*H*), 6.88 (t, ³*J*_{HH} = 7.4 Hz, 1H, Ar*H*), 2.25 (s, 3H, C*H*₃), 2.19 (s, 3H, C*H*₃).

¹³C NMR (125.77 MHz, [D₆]DMSO, 300 K): δ 162.6 (*C*H=N), 157.6 (Ar*C*), 151.8 (Ar*C*), 135.7 (Ar*C*), 135.3 (Ar*C*H), 130.5 (Ar*C*H), 128.6 (Ar*C*H), 127.3 (Ar*C*), 125.6 (Ar*C*), 120.3 (Ar*C*H), 118.9 (Ar*C*), 117.2 (Ar*C*H), 20.6 (*C*H₃), 15.9 (*C*H₃).

Synthesis of 2,4-(di-tert-butyl)-6-{[(2'-hydroxyphenyl)imino]methyl}phenol (3)

To a stirred solution of 2-aminophenol (4.60 g, 42.15 mmol) in ethanol (100 mL) was slowly added 3,5-di-*tert*-butyl-2-hydroxybenzaldehyde (9.87 g, 42.15 mmol). Formic acid (2-4 drops) was added as a catalyst. The reaction mixture was then refluxed at 90 °C for 2 h. After cooling to room temperature, yellow crystals formed. The crystals were collected by filtration and dried under vacuum. Yield: 10.42 g, 95%.

¹H NMR (500.13 MHz, CDCl₃, 300 K): δ 8.71 (s, 1H, C**H**=N), 7.50 (d, ⁴J_{HH} = 2.4 Hz, 1H, Ar**H**), 7.27 (d, ⁴J_{HH} = 3.0 Hz, 1H, Ar**H**), 7.23–7.19 (m, 1H, Ar**H**), 7.16 (dd, ⁴J_{HH} = 1.5 Hz, ³J_{HH} = 7.9 Hz, 1H, Ar**H**), 7.03 (dd, ⁴J_{HH} = 1.3 Hz, ³J_{HH} = 8.1 Hz, 1H, Ar**H**), 6.98–6.94 (m, 1H, Ar**H**), 1.48 (s, 9H, C(C**H**₃)₃), 1.35 (s, 9H, C(C**H**₃)₃).

¹³C NMR (125.77 MHz, CDCl₃, 300 K): δ 165.4 (*C*H=N), 158.0 (Ar*C*), 150.1 (Ar*C*), 141.5 (Ar*C*), 137.4 (Ar*C*), 136.3 (Ar*C*), 129.0 (Ar*C*H), 128.6 (Ar*C*H), 127.5 (Ar*C*H), 121.2 (Ar*C*H), 118.8 (Ar*C*), 118.5 (Ar*C*H), 118.0 (Ar*C*H), 35.4 (*C*(CH₃)₃), 34.5 (*C*(CH₃)₃), 31.7 (C(*C*H₃)₃), 29.7 (C(*C*H₃)₃).

Synthesis of 2,4-dichloro-6-{[(2'-hydroxyphenyl)imino]methyl}phenol (4)

To a stirred solution of 2-aminophenol (1.70 g, 15.58 mmol) in ethanol (30 mL) was slowly added 3,5-dichloro-2-hydroxybenzaldehyde (2.98 g, 15.58 mmol). Formic acid (2-4 drops) was added as a catalyst. The reaction mixture was then refluxed at 90 °C for 2 h. After cooling to room temperature, red crystals formed. The crystals were collected by filtration and dried under vacuum. Yield: 4.06 g, 92%.

¹H NMR (500.13 MHz, [D₆]DMSO, 300 K): δ 10.22 (s, 1H, O*H*), 9.07 (s, 1H, C*H*=N), 7.65 (d, ⁴*J*_{HH} = 2.6 Hz, 1H, Ar*H*), 7.50 (dd, ⁴*J*_{HH} = 1.5 Hz, ³*J*_{HH} = 8.0 Hz, 1H, Ar*H*), 7.21–7.18 (m, 1H, Ar*H*), 7.01 (dd, ⁴*J*_{HH} = 1.3 Hz, ³*J*_{HH} = 8.1 Hz, 1H, Ar*H*), 6.95–6.91 (m, 1H, Ar*H*). ¹³C NMR (125.77 MHz, [D₆]DMSO, 300 K): δ 160.1 (*C*H=N), 159.5 (Ar*C*), 151.6 (Ar*C*), 132.9 (Ar*C*), 131.9 (Ar*C*), 130.9 (Ar*C*H), 129.8 (Ar*C*H), 123.6 (Ar*C*), 120.7 (Ar*C*), 120.4 (Ar*C*H), 120.1 (Ar*C*H), 119.7 (Ar*C*H), 117.4 (Ar*C*H).

Synthesis of 2,4-dibromo-6-{[(2'-hydroxyphenyl)imino]methyl}phenol (5)

To a stirred solution of 2-aminophenol (0.78 g, 7.14 mmol) in ethanol (100 mL) was slowly added 3,5-dibromo-2-hydroxybenzaldehyde (2.04 g, 7.14 mmol). Formic acid (2-4 drops) was added as a catalyst. The reaction mixture was then refluxed at 90 °C for 2 h. After cooling to room temperature, red crystals formed. The crystals were collected by filtration and dried under vacuum. Yield: 1.83 g, 90%.

¹H NMR (500.13 MHz, [D₆]DMSO, 300 K): δ 15.66 (br s, 1H, O**H**), 10.23 (br s, 1H, O**H**), 9.06 (s, 1H, C**H**=N), 7.87–7.84 (m, 1H, Ar**H**), 7.78 (m, 1H, Ar**H**), 7.71 (d, ³*J*_{HH} = 7.6 Hz, 1H, Ar**H**), 7.20 (t, ³*J*_{HH} = 7.3 Hz, 1H, Ar**H**), 7.02 (d, ³*J*_{HH} = 8.0 Hz, 1H, Ar**H**), 6.93 (t, ³*J*_{HH} = 6.0 Hz 1H, Ar**H**).

¹³C NMR (125.77 MHz, [D₆]DMSO, 300 K): δ 161.6 (*C*H=N), 159.4 (Ar*C*), 151.6 (Ar*C*), 138.3 (Ar*C*H), 134.7 (Ar*C*H), 131.6 (Ar*C*), 129.8 (Ar*C*H), 120.6 (Ar*C*), 120.4 (Ar*C*H), 119.7 (Ar*C*H), 117.4 (Ar*C*H), 114.2 (Ar*C*), 107.8 (Ar*C*).

Synthesis of 2-isopropyl-6-{[(2'-hydroxyphenyl)imino]methyl}phenol (6)

To a stirred solution of 2-aminophenol (3.30 g, 30.24 mmol) in ethanol (100 mL) was slowly added 3isopropyl-2-hydroxybenzaldehyde (5.00 g, 30.24 mmol). Formic acid (2-4 drops) was added as a catalyst. The reaction mixture was then refluxed at 90 °C for 2 h. After the removal of the volatiles, an orange oil was obtained which was then recrystallized from cold hexane. Orange crystals were collected by filtration and dried under vacuum. Yield: 5.30 g, 69%.

¹H NMR (500.13 MHz, CDCl₃, 300 K): δ 12.59 (br s, 1H, O**H**), 8.69 (s, 1H, C**H**=N), 7.38 (d, ³J_{HH} = 7.5 Hz, 1H, Ar**H**), 7.28 (d, ³J_{HH} = 7.6 Hz, 1H, Ar**H**), 7.22 (t, ³J_{HH} = 7.6 Hz, 1H, Ar**H**), 7.15 (d, ³J_{HH} = 7.8 Hz, 1H, Ar**H**), 7.04 (d, ³J_{HH} = 8.1 Hz, 1H, Ar**H**), 6.97 (t, ³J_{HH} = 7.6 Hz, 2H, Ar**H**), 5.83 (br s, 1H, O**H**), 3.45 (sept, 1H, C**H**(CH₃)₂), 1.30 (d, ³J_{HH} = 6.9 Hz, 6H, CH(C**H**₃)₂).

¹³C NMR (125.77 MHz, CDCl₃, 300 K): δ 164.6 (*C*H=N), 158.3 (Ar*C*), 150.1 (Ar*C*), 136.9 (Ar*C*), 136.1 (Ar*C*), 130.8 (Ar*C*H), 130.6 (Ar*C*H), 128.8 (Ar*C*H), 121.3 (Ar*C*H), 119.6 (Ar*C*H), 118.9 (Ar*C*), 118.5 (Ar*C*H), 116.1 (Ar*C*H), 26.8 (*C*H(CH₃)₂), 22.6 (CH(*C*H₃)₂).

Synthesis of 2-tert-butyl-6-{[(2'-hydroxyphenyl)imino]methyl}phenol (7)

To a stirred solution of 2-aminophenol (1.20 g, 11.00 mmol) in ethanol (100 mL) was slowly added 3*tert*-butyl-2-hydroxybenzaldehyde (2.00 g, 11.00 mmol). Formic acid (2-4 drops) was added as a catalyst. The reaction mixture was then refluxed at 90 °C for 2 h. After the removal of the volatiles, a yellow oil was obtained which was then recrystallized from cold hexane. Yellow crystals were collected by filtration and dried under vacuum. Yield: 2.17 g, 72%.

¹H NMR (500.13 MHz, CDCl₃, 300 K): δ 12.94 (br s, 1H, O**H**), 8.71 (s, 1H, C**H**=N), 7.49 (d, ³*J*_{HH} = 7.4 Hz, 1H, Ar**H**), 7.33 (d, ³*J*_{HH} = 7.4 Hz, 1H, Ar**H**), 7.26 (t, ³*J*_{HH} = 7.5 Hz, 1H, Ar**H**), 7.18 (d, ³*J*_{HH} = 7.6 Hz, 1H, Ar**H**), 7.09 (d, ³*J*_{HH} = 7.8 Hz, 1H, Ar**H**), 7.02 (t, ³*J*_{HH} = 7.3 Hz, 1H, Ar**H**), 6.98 (t, ³*J*_{HH} = 7.7 Hz, 1H, Ar**H**), 1.54 (s, 9H, (C**H**₃)₃).

¹³C NMR (125.77 MHz, CDCl₃, 300 K): δ 164.9 (*C*H=N), 160.3 (Ar*C*), 150.1 (Ar*C*), 138.0 (Ar*C*), 136.0 (Ar*C*), 131.4 (Ar*C*H), 131.3 (Ar*C*H), 128.8 (Ar*C*H), 121.3 (Ar*C*H), 119.5 (Ar*C*) 119.2 (Ar*C*H), 118.6 (Ar*C*H), 116.1 (Ar*C*H), 35.2 (*C*(CH₃)₃), 29.6 (C(*C*H₃)₃).

Synthesis of 2-phenyl-6-{[(2'-hydroxyphenyl)imino]methyl}phenol (8)

To a stirred solution of 2-aminophenol (2.75 g, 25.20 mmol) in ethanol (100 mL) was slowly added 3-phenyl-2-hydroxybenzaldehyde (5.00 g, 25.20 mmol). Formic acid (2-4 drops) was added as a catalyst. The reaction mixture was then refluxed at 90 °C for 2 h. After cooling to room temperature, red crystals formed. The crystals were collected by filtration and dried under vacuum. Yield: 6.20 g, 85%.

¹H NMR (500.13 MHz, CDCl₃, 300 K): δ 13.01 (s, 1H, O**H**), 8.75 (s, 1H, C**H**=N), 7.67–7.65 (m, 2H, Ar**H**), 7.51 (dd, ⁴*J*_{HH} = 1.7 Hz, ³*J*_{HH} = 7.5 Hz, 1H, Ar**H**), 7.50–7.46 (m, 2H, Ar**H**), 7.44 (dd, ⁴*J*_{HH} = 1.7 Hz, ³*J*_{HH} = 7.7 Hz, 1H, Ar**H**), 7.40–7.37 (m, 1H, Ar**H**), 7.23–7.18 (m, 2H, Ar**H**), 7.07 (t, ³*J*_{HH} = 7.6 Hz, 1H, Ar**H**), 6.99–6.96 (m, 2H, Ar**H**).

¹³C NMR (125.77 MHz, CDCl₃, 300 K): δ 163.9 (*C*H=N), 159.3 (Ar*C*), 150.2 (Ar*C*), 137.5 (Ar*C*), 135.6 (Ar*C*), 134.9 (Ar*C*H), 132.4 (Ar*C*H), 130.5 (Ar*C*), 129.6 (Ar*C*H), 129.1 (Ar*C*H), 128.5 (Ar*C*H), 127.7 (Ar*C*H), 121.3 (Ar*C*H), 119.8 (Ar*C*H), 119.7 (Ar*C*), 118.4 (Ar*C*H), 116.3 (Ar*C*H).

Synthesis of 2-(1,1-diphenylethyl)-4-methyl-6-{[(2'-hydroxyphenyl)imino]methyl}phenol (9)

To a stirred solution of 2-aminophenol (1.72 g, 15.80 mmol) in ethanol (100 mL) was slowly added 3- (1,1-diphenylethyl)-5-methyl-2-hydroxybenzaldehyde (5.00 g, 15.80 mmol). Formic acid (2-4 drops) was added as a catalyst. The reaction mixture was then refluxed at 90 °C for 2 h. After cooling to room temperature, red crystals formed. The crystals were collected by filtration and dried under vacuum. Yield: 5.00 g, 78%.

¹H NMR (500.13 MHz, CDCl₃, 300 K): δ 12.43 (br s, 1H, OH), 8.64 (s, 1H, CH=N), 7.33–7.29 (m, 4H, ArH), 7.26–7.25 (m, 1H, ArH), 7.24 (t, ⁴J_{HH} = 2.3 Hz, 1H, ArH), 7.22–7.13 (m, 5H, ArH), 7.16–7.15 (m, 1H, ArH), 7.10 (dd, ⁴J_{HH} = 1.5 Hz, ³J_{HH} = 7.9 Hz, 1H, ArH), 6.98 (dd, ⁴J_{HH} = 1.3 Hz, ³J_{HH} = 8.1 Hz, 1H, ArH), 6.96–6.92 (m, 1H ArH), 6.64–6.63 (m, 1H, ArH), 5.70 (br s, 1H, OH), 2.39 (s, 3H, CH₃), 2.20 (s, 3H, CH₃).

¹³C NMR (125.77 MHz, CDCl₃, 300 K): δ 164.5 (*C*H=N), 157.5 (Ar*C*), 150.2 (Ar*C*), 148.4 (Ar*C*H), 136.7 (Ar*C*), 136.1 (Ar*C*), 136.0 (Ar*C*H), 132.0 (Ar*C*H), 128.8 (Ar*C*H), 128.7 (Ar*C*H), 128.2 (Ar*C*H), 127.8 (Ar*C*), 126.2 (Ar*C*H), 121.2 (Ar*C*H), 119.5 (Ar*C*), 118.6 (Ar*C*), 116.2 (Ar*C*H), 52.1 (*C*), 27.9 (*C*H₃), 21.0 (*C*H₃).

Synthesis of L³₂AlOBn (10)

To a stirred solution of **3b** (0.17 g, 0.25 mmol) in hexane (5 mL) was added one equivalent of benzyl alcohol (26 μ L, 0.25 mmol). The reaction mixture was stirred at 40 °C for 5 hours during which the time white solids precipitated. The solids were collected by filtration and dried under vacuum. Yield: 0.15 g, 79%.

¹H NMR (500.13 MHz, toluene-d₈, 343 K): δ 8.11–8.09 (m, 2H, Ar*H*), 8.07 (d, ⁴*J*_{HH} = 2.6 Hz, 2H, Ar*H*), 7.55 (d, ⁴*J*_{HH} = 2.6 Hz, 2H, Ar*H*), 7.37–7.36 (m, 2H, Ar*H*), 7.22–7.20 (m, 2H, Ar*H*), 7.10–7.06 (m, 3H, Ar*H*), 7.02–6.97 (m, 4H, Ar*H*), 5.08 (m, 2H, C*H*₂), 1.31 (s, 18H, C(C*H*₃)₃), 1.01 (s, 18H, C(C*H*₃)₃).

¹³C NMR (125.77 MHz, toluene-d₈, 343 K): δ 166.0 (*C*=N), 161.8 (Ar*C*), 149.3 (Ar*C*), 141.0 (Ar*C*),
139.6 (Ar*C*), 138.1 (Ar*C*), 130.5 (Ar*C*H), 128.2 (Ar*C*H), 127.3 (Ar*C*H), 126.3 (Ar*C*), 125.6 (Ar*C*H),
125.4 (Ar*C*H), 121.7 (Ar*C*H), 121.0 (Ar*C*H), 110.7 (Ar*C*), 110.3 (Ar*C*H), 66.2 (*C*H₂), 35.1 (*C*(CH₃)₃),
34.6 (*C*(CH₃)₃), 31.7 (C(*C*H₃)₃), 29.4 (C(*C*H₃)₃).

Fig. S5 ¹H NMR spectrum of 4a in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S7 ¹H NMR spectrum of **6a** in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S9. ¹H NMR spectrum of **8a** in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S11 ¹H NMR spectrum of **1b** in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S13 ¹H NMR spectrum of 3b in CDCl₃ at 298 K.

Fig. S15 ¹H NMR spectrum of **5b** in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S17 ¹H NMR spectrum of **7b** in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S20 ¹H NMR spectrum of **10** in toluene- d_8 at 343 K (* = solvent residue signal).

Empirical formula	C ₁₉ H ₂₂ AlNO ₂
Formula weight	323.25
Temperature (K)	100
Crystal size (mm)	$0.180 \times 0.220 \times 0.260$
Crystal system	monoclinic
Space group	P2/c
<i>a</i> (Å)	26.3261(13)
b (Å)	10.5969(4)
<i>c</i> (Å)	26.0751(11)
α (deg)	90
β (deg)	105.305(2)
γ (deg)	90
V (Å ³)	7016.3(5)
Ζ	16
Absorption coefficient (mm ⁻¹)	0.124
Calculated density (mg/m ³)	1.224
<i>F</i> (000)	2752
Theta range for data collection (deg)	0.80 to 25.06
Reflections collected	34479
Independent reflections	12422 [$R(int) = 0.0474$]
Number of observations $[>2\sigma(I)]$	7782
Goodness of fit on F ²	1.031
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0512
	wR2 = 0.1201
R indices (all data)	R1 = 0.0970
	wR2 = 0.1431
Largest difference in peak and hole $(e/Å^3)$	0.28 and -0.35

 Table S1 Crystallographic data and structure refinement details for complex 7a.

Bond lengths (Å)							
Al1-01	1.7697(18)	C1-C2	1.386(3)	C10-C11	1.386(4)		
Al1-N1	1.951(2)	C6-C1	1.380(3)	C12-C11	1.387(3)		
Al1-C19	1.951(3)	C2-C3	1.382(4)	C12-C13	1.419(3)		
Al1-C18	1.956(3)	C4-C3	1.395(4)	C11-H11	0.93		
C13-O1	1.334(3)	C5-C4	1.389(4)	C10-H10	0.93		
C7-N1	1.317(3)	C6-C5	1.376(3)	С9-Н9	0.93		
C8-C7	1.441(3)	С5-Н5	0.93	C14-C12	1.527(3)		
C13-C8	1.415(3)	C4-H4	0.93	C14-C15	1.538(3)		
O2-C7	1.356(3)	С3-Н3	0.93	C14-C16	1.550(3)		
N1-C1	1.410(3)	C2-H2	0.93	C17-C14	1.531(3)		
C8-C9	1.401(3)	C10-C9	1.374(3)	C17-H17A	0.96		
C15-H15A	0.96	C16-H16A	0.96	C17-H17B	0.96		
C15-H15B	0.96	C16-H16B	0.96	C17-H17C	0.96		
C15-H15C	0.96	C16-H16C	0.96	C19-H19B	0.96		
C18-H18A	0.96	C18-H18C	0.96	C19-H19C	0.96		
C18-H18B	0.96	C19-H19A	0.96				
		Bond an	gles (°)				
01-Al1-N1	92.08(9)	O1-Al1-C19	111.99(11)	N1-Al1-C19	107.97(11)		
O1-Al1-C18	114.56(11)	N1-Al1-C18	108.75(10)	C19-Al1-C18	118.06(12)		
C7-O2-C6	105.45(18)	C9-C10-C11	119.5(2)	С9-С10-Н10	120.2		
C11-C10-H10	120.2	C14-C17-H17A	109.5	C14-C17-H17B	109.5		
H17A-C17-H17B	109.5	C14-C17-H17C	109.5	H17A-C17-H17C	109.5		
H17B-C17-H17C	109.5	C12-C14-C17	110.3(2)	C12-C14-C15	112.0(2)		
C17-C14-C15	107.2(2)	C12-C14-C16	109.5(2)	C17-C14-C16	110.8(2)		
C15-C14-C16	107.0(2)	C11-C12-C13	116.9(2)	C11-C12-C14	122.2(2)		
C13-C12-C14	120.9(2)	01-C13-C8	120.5(2)	C9-C8-C13	120.9(2)		
O1-C13-C12	120.0(2)	C8-C13-C12	119.5(2)	C9-C8-C7	119.0(2)		
C13-C8-C7	120.0(2)	N1-C7-O2	113.3(2)	N1-C7-C8	128.2(2)		
O2-C7-C8	118.4(2)	C5-C6-C1	124.0(2)	C5-C6-O2	128.0(2)		
C1-C6-O2	108.0(2)	C6-C5-C4	115.0(2)	С6-С5-Н5	122.5		
С4-С5-Н5	122.5	C5-C4-C3	121.8(3)	С5-С4-Н4	119.1		
С3-С4-Н4	119.1	C14-C15-H15B	109.5	C1-N1-Al1	131.08(16)		
C14-C16-H16A	109.5	H15A-C15-H15B	109.5	C6-C1-C2	120.8(3)		
C14-C16-H16B	109.5	C14-C15-H15C	109.5	C6-C1-N1	107.5(2)		
H16A-C16-H16B	109.5	H15A-C15-H15C	109.5	C2-C1-N1	131.7(2)		
C14-C16-H16C	109.5	H15B-C15-H15C	109.5	C3-C2-C1	116.5(2)		
H16A-C16-H16C	109.5	C13-O1-Al1	135.49(16)	С3-С2-Н2	121.8		
H16B-C16-H16C	109.5	C7-N1-C1	105.8(2)	С1-С2-Н2	121.8		
C14-C15-H15A	109.5	C7-N1-Al1	122.99(17)	C2-C3-C4	121.9(3)		
С2-С3-Н3	119.0	С4-С3-Н3	119.0	C10-C9-C8	119.4(2)		
С10-С9-Н9	120.3	C10-C11-H11	118.1	C12-C11-H11	118.1		
Al1-C18-H18A	109.5	Al1-C18-H18C	109.5	H19A-C19-H19B	109.5		
Al1-C18-H18B	109.5	H18A-C18-H18C	109.5	Al1-C19-H19C	109.5		
H18A-C18-H18B	109.5	H18B-C18-H18C	109.5	H19A-C19-H19C	109.5		
Al1-C19-H19A	109.5	Al1-C19-H19B	109.5	H19B-C19-H19C	109.5		

Empirical formula	$C_{27}H_{19}AIN_2O_4 \cdot C_7H_8$
Formula weight	554.55
Temperature (K)	100
Crystal size (mm)	0.240 x 0.320 x 0.460
Crystal system	monoclinic
Space group	$P2_1/c$
<i>a</i> (Å)	12.1416(15)
<i>b</i> (Å)	21.238(2)
<i>c</i> (Å)	10.7010(11)
α (deg)	90
β (deg)	93.260(4)
γ (deg)	90
V (Å ³)	2754.9(5)
Z	4
Absorption coefficient (mm ⁻¹)	0.117
Calculated density (mg/m ³)	1.337
<i>F</i> (000)	1160
Theta range for data collection (deg)	5.1 to 55
Reflections collected	16300
Independent reflections	6260 [<i>R</i> (int) = 0.0459]
Number of observations $[\geq 2\sigma(I)]$	4874
Goodness of fit on F ²	1.044
Final <i>R</i> indices $[I > 2\sigma (I)]$	R1 = 0.0422
	wR2 = 0.1058
<i>R</i> indices (all data)	R1 = 0.0574
	wR2 = 0.1154
Largest difference in peak and hole (e/Å3)	0.35 and -0.28

 Table S3 Crystallographic data and structure refinement details for complex 1b.

Bond lengths (Å)							
A11-03	1 7891(12)	A11-N2	2.0472(12)	02-C7	1 3621(17)		
All-01	1.7873(12)	All-N1	2.0666(13)	01-C1	1.3021(17) 1.3240(18)		
All-C27	1.9574(16)	O2-C8	1.3804(18)	O3-C14	1.3272(17)		
O3-C14	1.3272(17)	O4-C21	1.3818(18)	N2-C7	1.3074(18)		
N2-C13	1.4057(19)	N1-C20	1.3097(18)	C24-H24	0.9300		
N1-C26	1.4049(19)	C7-C6	1.434(2)	C23-C22	1.386(2)		
C4-C5	1.370(2)	C4-C3	1.389(2)	C16-C17	1.392(2)		
C4-H4	0.9300	C5-C6	1.404(2)	C10-C9	1.385(2)		
C19-C14	1.416(2)	C6-C1	1410(2)	C10-C11	1 395(2)		
C15-C16	1 378(2)	C15-C14	1.398(2)	C10-H10	0.9300		
C15-H15	0.9300	C26-C25	1.390(2) 1.382(2)	C11-C12	1.388(2)		
C26-C21	1.381(2)	$C_{20} C_{25} C_{24}$	1.384(2)	C1-C2	1.500(2) 1.403(2)		
C20-C21	1.381(2)	C23-C24	1.304(2)	C1-C2 C12 C12	1.403(2)		
С23-П23	0.9300	C_{24} - C_{25}	1.392(2) 1.395(2)	C12-C15 C27 H27A	1.380(2)		
	0.9300	C13-C8	1.383(2)	$C_2/-\Pi_2/A$	0.9600		
C8-C9	1.376(2)	C16-H16	0.9300	C3-C2	1.375(2)		
С3-Н3	0.9300	C17-C18	1.372(2)	C20-C19	1.436(2)		
C21-C22	1.381(2)	С22-Н22	0.9300	C19-C18	1.404(2)		
		Bond an	gles (°)				
03-A11-01	121.02(6)	O3-A11-C27	119 15(7)	С8-С9-Н9	122.4		
01-All-C27	119 79(8)	03-All-N2	85 89(5)	C24-C23-C22	121 70(16)		
01-All-N2	88 08(5)	C27-All-N2	98 15(6)	C9-C10-C11	121.70(15) 121.50(15)		
03-Al1-N1	87 46(5)	01-All-N1	85 15(5)	C9-C10-H10	119.3		
C27-All-N1	95 50(6)	N2-A11-N1	166 35(5)	C2-C3-C4	120 63(16)		
C7-02-C8	104 87(11)	C1-O1-A11	137.09(10)	C12-C11-C10	122.24(16)		
C14-O3-All	136 6(10)	C20-O4-C21	104 90(11)	C12-C11-H11	118.9		
C7-N2-C13	105.48(12)	C7-N2-A11	125.02(10)	C2-C1-C6	117 91(14)		
C13-N2-All	12943(10)	C20-N1-C26	105.82(12)	C13-C12-C11	11648(15)		
C20-N1-A11	129.18(10) 124.98(10)	C26-N1-A11	129.14(10)	C13-C12-H12	121.8		
N2-C7-O2	113 96(13)	N2-C7-C6	127.58(13)	C2-C3-H3	119.7		
02-07-02	118.96(12) 118.45(12)	C5-C4-C3	119 68(15)	C12-C13-C8	120 15(14)		
C5-C4-H4	120.2	C3-C2-C1	121 12(15)	C12-C13-N2	132.22(14)		
C4-C5-C6	120.68(16)	C4-C5-H5	1197	C8-C13-N2	107.59(13)		
N1-C20-O4	11351(13)	C5-C6-C1	119 98(14)	Al1-C27-H27A	109.5		
C5-C6-C7	120.91(14)	C1-C6-C7	119.09(13)	C9-C8-O2	127 49(14)		
C16-C15-C14	120.92(14)	C16-C15-H15	119.5	C9-C8-C13	12439(14)		
N1-C20-C19	12740(13)	C25-C26-C21	120.32(15)	All-C27-H27C	109 5		
C25-C26-N1	132,19(14)	C21-C26-N1	107.48(13)	02-C8-C13	108.09(12)		
C_{26} - C_{25} - C_{24}	117.02(15)	04-C20-C19	119.09(12)	C8-C9-C10	115 25(15)		
С24-С25-Н25	121.5	C25-C24-C23	121 74(16)	01-C1-C2	119.20(10) 119.11(14)		
04-C21-C26	$108 \ 30(13)$	C22-C21-C26	123.87(15)	C18-C17-H17	120.1		
C21-C22-C23	115 33(15)	С21-С22-Н22	122.3	C17-C18-C19	120.1 120.44(14)		
С23-С22-Н22	122.3	C18-C19-C14	122.9 120.00(14)	C19-C18-H18	119.8		
C18-C19-C20	121 07(13)	C14-C19-C20	118 92(13)	O3-C14-C19	123 04(14)		
C15-C16-C17	120 69(15)	C15-C16-H16	1197	C21-C22-C23	115 33(15)		
C17-C16-H16	1197	C18-C17-C16	119 80(15)	C18-C17-H17	120.1		
C23-C24-H24	119.1	C16-C17-H17	120.1	01-C1-C6	122.97(14)		
03-C14-C15	118.82(13)	C17-C18-H18	119.8	C15-C14-C19	118.13(13)		
	110.0=(12)	21, 210 1110		010 011 017			

Table S4 Bond lengths (Å) and bond angles (°) for complex 1b.

Fig. S21 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **2a** (\bullet) and **2b** ($_{\$>}$) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S22 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **3a** (\bullet) and **3b** ($_{so}$) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S23 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **4a** (\bullet) and **4b** (∞) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S24 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **5a** (\bullet) and **5b** (∞) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S25 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **6a** (\bullet) and **6b** (s_{2}) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S26 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **7a** (\bullet) and **7b** (∞) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S27 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **8a** (\bullet) and **8b** (∞) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S28 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **9a** (\blacksquare) and **9b** ($_{\$\circ}$) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S29 Semilogarithmic plots of the *rac*-lactide conversion *versus* time in toluene at 70 °C with complex **1b**/PhCH₂OH as an initiator ([LA]₀ = 0.42 M: **I**, [AI] = 33.32 mM, [LA]₀/[AI] = 13; **II**, [AI] = 24.99 mM, [LA]₀/[AI] = 17; **III**, [AI] = 20.82 mM, [LA]₀/[AI] = 20; **IV**, [AI] = 16.66 mM, [LA]₀/[AI] = 25; **V**, [AI] = 12.50 mM, [LA]₀/[AI] = 34; **VI**, [AI] = 8.33 mM, [LA]₀/[AI] = 50).

Fig. S30 Plot of $\ln k_{app}$ versus $\ln [Al]$ for the polymerization of *rac*-lactide with complex **1b**/PhCH₂OH as an initiator (toluene, 70 °C, $[LA]_0 = 0.42$ M).

Fig. S31 Plot of k_{app} versus [Al] for the polymerization of *rac*-lactide with complex **1b**/PhCH₂OH as an initiator (toluene, 70 °C, [LA]₀ = 0.42 M).

Fig. S32 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **1a**/PhCH₂OH.

Fig. S33 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **1b**/PhCH₂OH.

Fig. S34 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **2a**/PhCH₂OH.

Fig. S35 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **2b**/PhCH₂OH.

Fig. S36 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **3a**/PhCH₂OH.

Fig. S37 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **3b**/PhCH₂OH.

Fig. S38 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **4a**/PhCH₂OH.

Fig. S39 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **4b**/PhCH₂OH.

Fig. S40 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **5a**/PhCH₂OH.

Fig. S41 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **5b**/PhCH₂OH.

Fig. S42 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **6a**/PhCH₂OH.

Fig. S43 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **6b**/PhCH₂OH.

Fig. S44 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **7a**/PhCH₂OH.

Fig. S45 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **7b**/PhCH₂OH.

Fig. S46 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **8a**/PhCH₂OH.

Fig. S47 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **8b**/PhCH₂OH.

Fig. S48 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **9a**/PhCH₂OH.

Fig. S49 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 70 °C in toluene (500 MHz, CDCl₃) with **9b**/PhCH₂OH.

Fig. S50 Homonuclear decoupled ¹H NMR spectrum of the methine region of PLA prepared from *rac*-lactide at 50 °C in toluene (500 MHz, CDCl₃) with **4b**/PhCH₂OH.

Fig. S51 Semilogarithmic plots of ε -CL conversion versus time in C₆D₆ at 40 °C with complexes **2a** (**•**) and **2b** (∞) ([ε -CL]₀/[Al] = 50, [Al]/[PhCH₂OH] = 1, [ε -CL]₀ = 0.83 M, [Al] = 16.67 mM).

Fig. S52 Semilogarithmic plots of ε -CL conversion versus time in C₆D₆ at 40 °C with complexes **3a** (**•**) and **3b** (∞) ([ε -CL]₀/[Al] = 50, [Al]/[PhCH₂OH] = 1, [ε -CL]₀ = 0.83 M, [Al] = 16.67 mM).

Fig. S53 Semilogarithmic plots of ε -CL conversion versus time in C₆D₆ at 40 °C with complexes **4a** (**•**) and **4b** (∞) ([ε -CL]₀/[Al] = 50, [Al]/[PhCH₂OH] = 1, [ε -CL]₀ = 0.83 M, [Al] = 16.67 mM).

Fig. S54 Semilogarithmic plots of ε -CL conversion versus time in C₆D₆ at 40 °C with complexes **5a** (**•**) and **5b** (∞) ([ε -CL]₀/[Al] = 50, [Al]/[PhCH₂OH] = 1, [ε -CL]₀ = 0.83 M, [Al] = 16.67 mM).

Fig. S55 Semilogarithmic plots of ε -CL conversion versus time in C₆D₆ at 40 °C with complexes **6a** (**•**) and **6b** (∞) ([ε -CL]₀/[Al] = 50, [Al]/[PhCH₂OH] = 1, [ε -CL]₀ = 0.83 M, [Al] = 16.67 mM).

Fig. S56 Semilogarithmic plots of ε -CL conversion versus time in C₆D₆ at 40 °C with complexes **7a** (**•**) and **7b** (∞) ([ε -CL]₀/[Al] = 50, [Al]/[PhCH₂OH] = 1, [ε -CL]₀ = 0.83 M, [Al] = 16.67 mM).

Fig. S57 Semilogarithmic plots of ε -CL conversion versus time in C₆D₆ at 40 °C with complexes **8a** (**•**) and **8b** (∞) ([ε -CL]₀/[Al] = 50, [Al]/[PhCH₂OH] = 1, [ε -CL]₀ = 0.83 M, [Al] = 16.67 mM).

Fig. S58 Semilogarithmic plots of ε -CL conversion versus time in C₆D₆ at 40 °C with complexes **9a** (**•**) and **9b** (so) ([ε -CL]₀/[Al] = 50, [Al]/[PhCH₂OH] = 1, [ε -CL]₀ = 0.83 M, [Al] = 16.67 mM).

Fig. S59 Plot of PLA $M_n(\bullet)$ (versus polystyrene standards) and PDI (\bigcirc) as a function of monomer conversion for a ε -CL polymerization using **1b**/PhCH₂OH ([ε -CL]₀/[Al] = 50, C₆D₆, 40 °C).