Supporting Information

O,S-Heterocyclic Stannylenes: Synthesis and

Reactivity

Surendar Karwasara, Chandan Kumar Jha, Soumen Sinhababu, and Selvarajan Nagendran*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016,

India

Content	Page No.
Experimental Section	S2
Figure S1. Molecular structure of compound 7 (left) and coordination environment around tin atom in compound 7 (right)	S5
Figure S2 . ¹ H NMR spectrum of compound 2 in: (1) Dry CDCl ₃ , (2) Normal CDCl ₃ after 24 h, and (3) Normal CDCl ₃ and D_2O	S6
Figure S3. Molecular structure of compound 3	S7
Figure S4. Molecular structure of compound 6	S7
Figure S5. Molecular orbitals of compounds 2 (4.1a-b), 3 (4.2a-b), and 5 (4.3a-b)	S8
X-ray data collection for compounds 2-7	S9
Table S1. Crystal data and refinement parameters for compounds 2-7	S10
Computational details	S11
Coordinates of the optimized geometries of compounds 2, 3, and 5	S11
References	S14

Experimental Section

All the air and moisture sensitive manipulations were done under a dry N₂ atmosphere using either standard Schlenk or glovebox [Jacomex (GP Concept)-T2 workstation] techniques. Tetrahydrofuran was dried over sodium wire and benzophenone. Dichloromethane and CDCl₃ were dried over P₂O₅ and 4 Å molecular sieves, respectively. SnCl₂ and InCl were purchased from Alfa Aesar and used as received. Sodium 2-mercaptopyridine-*N*-oxide, GeCl₂-dioxane, and SbCl₃ were purchased from Aldrich and used as received. Melting points were recorded on a Unitech Sales digital melting point apparatus by sealing the compounds in glass capillaries. Elemental analyses were performed using a PerkinElmer CHN analyzer. ¹H, ¹³C, and ¹¹⁹Sn NMR spectra were recorded in CDCl₃/DMSO-d₆ on a 300 MHz Bruker DPX-300/400 MHz JEOL NMR spectrometers. The chemical shifts δ are reported in ppm and internally referenced with respect to residual solvent (¹H NMR) and solvent (¹³C NMR) resonances.^{S1} (CH₃)₄Sn was used as external reference for ¹¹⁹Sn NMR spectroscopic studies.

Synthesis of (2-mpno)₂Sn (2). To a stirred solution of SnCl₂ (500 mg, 2.64 mmol) in tetrahydrofuran (150 mL) was added sodium 2-mpno (787 mg, 5.27 mmol) in portions at room temperature and the reaction mixture was further stirred for 24 h. Then, the reaction mixture was filtered through a sintered funnel with celite. All the volatiles were removed from the filtrate under reduced pressure to give compound **2** as a white solid. The diffusion of hexane in the tetrahydrofuran solution of compound **2** afforded single-crystals suitable for X-ray diffraction studies. Yield: 950 mg (2.56 mmol, 97%). Mp: 148 °C (decomp). Anal. Calcd for $C_{10}H_8N_2O_2S_2Sn$ (M = 371.02): C, 32.37; H, 2.17; N, 7.55. Found: C, 32.43; H, 2.19; N, 7.51. ¹H NMR (300 MHz, CDCl₃): $\delta 6.86$ (t, ³*J*_{HH} = 6.9 Hz, 1H, *CH*), 7.15 (t, ³*J*_{HH} = 7.5 Hz, 8.1 Hz, 1H, *CH*), 7.55 (d, ³*J*_{HH} = 8.1 Hz, 1H, *CH*), 8.14 (d, ³*J*_{HH} = 6.6 Hz, 1H, *CH*). ¹³C {¹H} NMR (75 MHz,

CDCl₃): δ 117.90 (*C*H), 129.60 (*C*H), 129.94 (*C*H), 138.29 (*C*H), 159.08 (*C*). ¹¹⁹Sn{¹H} NMR (111.92 MHz, CDCl₃): δ -261.0.

Synthesis of (2-mpno)SnCl (3). To a stirred solution of SnCl₂ (200 mg, 1.05 mmol) in tetrahydrofuran (100 mL) was added sodium salt of 2-mpno (157 mg, 1.05 mmol) in portions and the reaction mixture was stirred for 24 h. Then, the reaction mixture was filtered through a sintered funnel with celite. All the volatiles were removed from the filtrate under reduced pressure to give compound **3** as a white solid. The suitable single-crystals of compound **3** were obtained from its tetrahydrofuran solution by slow evaporation method. Yield: 283 mg (1.01 mmol, 96%). Mp: 202 °C. Anal. Calcd for C₅H₄ClNOSSn (M = 280.32): C, 21.42; H, 1.44; N, 5.00. Found: C, 21.45; H, 1.43; N, 4.98. ¹H NMR (400.13 MHz, DMSO-D₆): δ 7.12 (t, ³J_{HH} = 6.0 Hz, 1H, CH), 7.42 (t, ³J_{HH} = 6.0 Hz, 1H, CH), 7.69 (d, ³J_{HH} = 6.0 Hz, 1H, CH), 8.45 (d, ³J_{HH} = 6.0 Hz, 1H, CH). ¹³C {¹H} NMR (100.63 MHz, DMSO-D₆): δ 119.65 (CH), 129.52 (CH), 131.62 (CH), 139.20 (CH). ¹¹⁹Sn {¹H} NMR (111.92 MHz, DMSO-D₆): δ -288.6.

Synthesis of [(2-mpno)SbCl]₂O (4). To a stirred solution of compound 2 (200 mg, 0.54 mmol) in tetrahydrofuran (80 mL) was added a solution of SbCl₃ (123 mg, 0.54 mmol) in tetrahydrofuran (15 ml) and the reaction mixture was further stirred for 5 h. Then, the solvent was removed under reduced pressure to give a white residue. The residue was dissolved in dichloromethane and filtered through a sintered funnel with celite. All the volatiles were removed from the filtrate under reduced pressure to get an analytically pure sample of compound 4 as a white solid. Hexane diffusion in the tetrahydrofuran solution of compound 4 gave its suitable single-crystals. Yield: 140 mg (0.24 mmol, 89%). Mp: 207 °C. Anal. Calcd for $C_{10}H_8Cl_2N_2O_3S_2Sb_2$ (*M* = 582.74): C, 20.61; H, 1.38; N, 4.81. Found: C, 20.68; H, 1.39; N, 4.79. ¹H NMR (300 MHz, CDCl₃): δ 7.07 (broad, 1H, CH), 7.41 (t, ³J_{HH} = 7.5 Hz, 7.2 Hz, 1H, CH),

7.69 (d, ${}^{3}J_{\text{HH}} = 7.8$ Hz, 1H, CH), 8.24 (d, ${}^{3}J_{\text{HH}} = 6.6$ Hz, 1H, CH). ${}^{13}C\{{}^{1}\text{H}\}$ NMR (75 MHz, CDCl₃): δ 132.45 (CH), 138.38 (CH).

Synthesis of (2-mpno)GeCl (5). To a stirred solution of compound **2** (100 mg, 0.27 mmol) in tetrahydrofuran (50 mL) was added a solution of GeCl₂.(1,4-dioxane) (124mg, 0.54 mmol) in tetrahydrofuran (10 ml) and the reaction mixture was further stirred for 2 h. Then, the solvent was removed under reduced pressure to give a white residue. The residue was dissolved in dichloromethane and filtered through a sintered funnel with celite. All the volatiles were removed from the filtrate under reduced pressure to afford an analytically pure sample of compound **5** as a white solid. Tetrahydrofuran solution of compound **5** yielded its single-crystal through slow evaporation of the solvent. Yield: 61 mg (0.26 mmol, 96%). Mp: 134 °C (decomp). Anal. Calcd for C₃H₄ClGeNOS (M = 234.25): C, 25.64; H, 1.72; N, 5.98. Found: C, 25.68; H, 1.72; N, 5.97. ¹H NMR (300 MHz, CDCl₃): δ 7.17 (t, ³*J*_{HH} = 6.9 Hz, 6.2 Hz, 1H, C*H*), 7.58 (t, ³*J*_{HH} = 7.2 Hz, 8.4 Hz, 1H, C*H*), 7.82 (d, ³*J*_{HH} = 8.4 Hz, 1H, C*H*), 8.34 (d, ³*J*_{HH} = 6.6 Hz, 1H, C*H*). ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 119.27 (*C*H), 128.39 (*C*H), 134.19 (*C*H), 137.31 (*C*H), 156.63 (*C*).

Synthesis of (2-mpno)InCl-2thf (6). To a stirred solution of compound 5 (100 mg, 0.36 mmol) in tetrahydrofuran (40 mL) was added InCl (54 mg, 0.36 mmol) in portions and the reaction mixture was stirred for 3 h. Then, the reaction mixture was filtered through a sintered funnel with celite. All the volatiles were removed from the filtrate under reduced pressure to give compound 6 as a white solid. Suitable single-crystals of compound 6 were obtained in a similar manner as in case of compound 5. Yield: 155 mg (0.34 mmol, 95%). Mp: 217 °C (decomp). Anal. Calcd for $C_{13}H_{20}Cl_2InNO_3S$ (M = 456.09): C, 34.23; H, 4.42; N, 3.07. Found: C, 34.28; H, 4.45; N, 3.08. ¹H NMR (300 MHz, CDCl₃): δ 1.89-1.93 (m, 8H, O(CH₂CH₂)₂), 3.90 (t, ³J_{HH} = 6.3 Hz, 8H,

O(CH₂CH₂)₂), 7.05-7.10 (m, 1H, CH), 7.39 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 8.1 Hz, 1H, CH), 7.69-7.72 (m, 1H, CH), 8.51 (d, ${}^{3}J_{HH}$ = 6.6 Hz, 1H, CH). ${}^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃): δ 25.58 (O(CH₂CH₂)₂), 69.02 (O(CH₂CH₂)₂), 119.45 (CH), 130.13 (CH), 132.15 (CH), 139.17 (CH), 157.01 (C).

Figure S1. Molecular structure of compound 7 (left) and coordination environment around tin atom in compound 7 (right). Selected bond lengths (Å) and angles (°): Sn(1)-O(1) 2.383(5), Sn(1)-S(1) 2.540(2); O(1)-Sn(1)-S(1) 71.6(1), O(1)#2-Sn(1)-O(1) 76.1(2), O(1)#1-Sn(1)-O(1) 128.3(2), S(1)#1-Sn(1)-O(1) 147.0(1), S(1)#2-Sn(1)- O(1) 78.2(1), S(1)#3-Sn(1)-O(1) 71.4(1), S(1)#1-Sn(1)-S(1) 96.2(1), S(1)#2-Sn(1)-S(1) 141.5(1). Equivalent atoms (#) are symmetry (y,1/2-x,1/2-z) generated.

Figure S2. ¹H NMR spectrum of compound 2 in: (1) Dry CDCl₃, (2) Normal CDCl₃ after 24 h, and (3) Normal CDCl₃ and D₂O.

Figure S3. Molecular structure of compound **3**. Selected bond lengths (Å) and angles (°): Sn(1)-O(1) 2.181(4), Sn(1)-S(1) 2.547(2), Sn(1)-Cl(1) 2.567(2); O(1)-Sn(1)-S(1) 77.3(1), O(1)-Sn(1)-Cl(1) 91.2(1), S(1)-Sn(1)-Cl(1) 93.0(1).

Figure S4. Molecular structure of compound **6**. Selected bond lengths (Å) and angles (°): In(1)-O(1) 2.174(2), In(1)-O(2) 2.277(2), In(1)-O(3) 2.262(2), In(1)-S(1) 2.530(1), In(1)-Cl(1) 2.428(1), In(1)-Cl(2) 2.417(1); O(1)-In(1)-S(1) 77.9(1), Cl(1)-In(1)-Cl(2) 99.9(1), O(1)-In(1)-Cl(2) 88.3(1), Cl(1)-In(1)-S(1) 94.0(1), O(3)-In(1)-O(2) 174.8(1).

 (4.1b) LUMO
 (4.2b) LUMO
 (4.3b) LUMO

 (4.1a) HOMO
 (4.2a) HOMO
 (4.3a) HOMO

Figure S5. Molecular orbitals of compounds 2 (4.1a-b), 3 (4.2a-b), and 5 (4.3a-b).

X-ray data collection for compounds 2-7

Single crystals of compounds 2-7 were coated with a cryprotectant and mounted on a glass fiber. The data were collected at low temperature on a Bruker SMART APEX CCD diffractometer with a 3-axis goniometer.^{S2} SAINT and SADABS software were used for data integration and empirical absorption correction, respectively.^{S3} The structures of these compounds were solved by direct methods and refined by full matrix least-squares on F^2 using SHELXTL.^{S4} All the non-hydrogen atoms were refined anisotropically. The positions of hydrogen atoms were calculated using a riding model and refined isotropically. Detailed crystallographic data for these compounds are given in Table S1.

	2	4	5	3	6	7
empirical formula	$C_{10}H_8N_2O_2S_2Sn$	$C_{10}H_8Cl_2N_2O_3S_2Sb_2$	C ₅ H ₄ Cl Ge N O S	C ₅ H ₄ Cl N O S Sn	C ₁₃ H ₂₀ Cl ₂ In N O ₃ S	$C_{20}H_{16}N_4O_4S_4Sn$
Fw	371.01	582.72	234.21	280.31	456.08	623.32
temperature, k	150(2)	175(2)	100(2)	150 (2)	100(2)	200(2)
wavelength, Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
cryst syst	triclinic	triclinic	monoclinic	triclinic	monoclinic	Tetragonal
space group	<i>P</i> -1	<i>P</i> -1	$P2_{1}/c$	<i>P</i> -1	$P2_{1}/c$	$P4_2/n$
unit cell dimens	<i>a</i> = 7.4019(10) Å	<i>a</i> = 9.4585(16) Å	<i>a</i> = 6.4885(19) Å	<i>a</i> = 5.9142(14) Å	<i>a</i> = 12.6099(16) Å	<i>a</i> = 9.2261(11) Å
	<i>b</i> = 7.5564(10) Å	<i>b</i> = 10.3141(18) Å	<i>b</i> = 13.237(4) Å	<i>b</i> = 7.4252(18) Å	<i>b</i> = 9.8845(13) Å	<i>b</i> = 9.2261(11) Å
	<i>c</i> = 11.4734(15) Å	c = 10.6648(18) Å	c = 9.119(3) Å	<i>c</i> = 9.479(2) Å	c = 14.1146(17) Å	c = 12.741(3) Å
	$\alpha = 88.006(2)^{\circ}$	$\alpha = 82.554(3)^{\circ}$		$\alpha = 79.270(4)^{\circ}$		
	$\beta = 74.539(2)^{\circ}$	$\beta = 64.039(3)^{\circ}$	$\beta = 102.608(5)^{\circ}$	$\beta = 72.376(4)^{\circ}$	$\beta = 99.243(2)^{\circ}$	
	$\gamma = 79.608(2)^{\circ}$	$\gamma = 63.591(3)^{\circ}$		$\gamma = 82.595(5)^{\circ}$		
volume, Å ³	608.30(14)	835.1(2)	764.3(4)	388.62(16)	1736.4(4)	1084.5(4)
Z	2	2	4	2	4	2
density (calcd),	2.026	2.317	2.035	2.395	1.745	1.909
Mg/m ³						
absorption	2.432	3.812	4.554	3.825	1.796	1.602
coefficient, mm ⁻¹						
F(000)	360.0	548.0	456.0	264.0	912.0	620.0
cryst size, mm ³	0.438 x 0.355 x 0.299	0.420 x 0.306 x 0.255	0.476 x 0.402 x 0.353	0.449 x 0.357 x 0.275	0.513 x 0.391 x 0.322	0.488 x 0.415 x 0.367
θ range for data	2.74 to 25.00	2.13 to 24.99	2.76 to 24.99	2.28 to 24.98	2.63 to 25.00	2.73 to 24.95
collection, deg						
limiting indices	$-8 \le h \le 8,$	$-11 \le h \le 11,$	$-7 \le h \le 7,$	$-7 \le h \le 7,$	$-14 \le h \le 14,$	$-10 \le h \le 10,$
	$-8 \le k \le 8,$	$-12 \le k \le 12,$	$-15 \le k \le 15,$	$-8 \le k \le 8,$	$-9 \le k \le 11,$	$-10 \le k \le 10,$
	$-13 \le l \le 13$	$-12 \le l \le 12$	$-10 \le l \le 10$	$-11 \le l \le 11$	$-13 \le l \le 16$	$-14 \le l \le 15$
no. of reflns collected	3118	4294	3888	1936	8580	5581
no. of indep reflns	$2139 (R_{int} = 0.0166)$	2937 ($R_{\rm int} = 0.0215$)	1347 ($R_{int} = 0.0351$)	1360 ($R_{int} = 0.0207$)	$3058 (R_{int} = 0.0243)$	953 ($R_{int} = 0.0627$)
abs corr	semiempirical	semiempirical	semiempirical	semiempirical	semiempirical	Semiempirical
refinement method	full-matrix	full-matrix	full-matrix	full-matrix	full-matrix	full-matrix
	least-squares on F ²	least-squares on F ²	least-squares on F^2	least-squares on F ²	least-squares on F ²	least-squares on F ²
no. of data / restraints	2139 / 0 / 154	2937 / 0 / 190	1342 / 0 / 91	1360 / 0 / 91	3058 / 0 / 190	953 / 0 / 75
/ params						
goodness-of-fit on F^2	1.058	1.049	1.140	1.069	1.026	1.282
final R indices	$R_1 = 0.0244, wR_2 =$	$R_1 = 0.0376, wR_2 =$	$R_1 = 0.0513, wR_2 =$	$R_1 = 0.0346, wR_2 = 0.$	$R_1 = 0.0242, wR_2 =$	$R_1 = 0.0665, wR_2 =$
[<i>I</i> >2 <i>σ</i> (<i>I</i>)]	0.0569	0.0888	0.1327	0.0814	0.0560	0.1297
R indices (all data)	$R_1 = 0.0260, wR_2 =$	$R_1 = 0.0478, wR_2 =$	$R_1 = 0.0546, wR_2 =$	$R_1 = 0.0398, wR_2 =$	$R_1 = 0.0278, wR_2 =$	$R_1 = 0.0777, wR_2 =$
	0.0578	0.0934	0.1348	0.0833	0.0576	0.1345
largest diff peak and	0.731 and -0.491	1.554 and -0.876	1.203 and -0.823	1.132 and -0.913	0.644 and -0.434	0.844 and -0.965
hole, e Å ⁻³						

Table S1. Crystal data and refinement parameters for compounds 2-7

Computational details

The Gaussian-09 program was used to perform the DFT calculations on compounds **2**, **3**, and **5**.^{S5} The geometry optimizations were performed on these compounds (**2**, **3**, and **5**) at B3LYP level of theory using LANL2DZ basis set for tin and germanium, and TZVP basis set for rest of the atoms (for coordinates of optimized geometries of these compounds, see the Appendix). The frequency calculations were carried out for on the optimized geometries of these compounds at the same level of theory to characterize the stationary points as minima. The input coordinates were taken from crystallographic information files (CIFs) of these compounds. The NBO analysis was performed on the optimized geometry of compound **2** at the same level of theory.^{S6} The Chemcraft software was used for the graphical visualization of molecular orbitals (www.chemcraftprog.com).

Coordinates of the optimized geometries of:

Compound 2

Sn	-0.000028000	1.696350000	-0.000066000
S	0.933706000	-0.084483000	1.742570000
S	-0.933563000	-0.084810000	-1.742465000
0	-2.020665000	1.028027000	0.780852000
0	2.020569000	1.027886000	-0.781089000
N	-2.644473000	-0.069919000	0.363007000
Ν	2.644433000	-0.069965000	-0.363064000
С	-3.666696000	-0.527658000	1.130518000
Н	-3.830411000	0.050743000	2.026322000
С	-4.404686000	-1.620646000	0.756523000
Н	-5.213076000	-1.955513000	1.390574000
С	-3.037319000	-1.804017000	-1.202217000

Н	-2.759914000	-2.290282000	-2.126354000
С	4.083263000	-2.272324000	0.439314000
Η	4.647576000	-3.136753000	0.763955000
С	-2.280039000	-0.684804000	-0.811233000
С	2.280088000	-0.684647000	0.811306000
С	3.037383000	-1.803803000	1.202414000
Н	2.760053000	-2.289909000	2.126657000
С	3.666629000	-0.527802000	-1.130542000
Н	3.830295000	0.050450000	-2.026452000
С	4.404642000	-1.620738000	-0.756428000
Н	5.213030000	-1.955659000	-1.390453000
С	-4.083238000	-2.272418000	-0.439101000
Н	-4.647573000	-3.136866000	-0.763656000

Compound 3

Sn	1.670495000	0.114021000	-0.436443000	
S	-0.146138000	1.850180000	0.332365000	
Cl	1.559667000	-1.238127000	1.614003000	
N	-1.314775000	-0.422966000	-0.574540000	
0	-0.146148000	-0.709442000	-1.174698000	
С	-1.477131000	0.740104000	0.132393000	
С	-2.312143000	-1.324972000	-0.743587000	
Н	-2.025363000	-2.197113000	-1.309902000	
С	-3.558212000	-1.099969000	-0.220611000	
Н	-4.334479000	-1.837036000	-0.366166000	
С	-3.783445000	0.079726000	0.498079000	
Η	-4.755991000	0.283249000	0.926557000	
С	-2.755068000	0.978531000	0.668097000	
Н	-2.896471000	1.890901000	1.228910000	

Compound 5

Ge	-1.807671000	0.074012000	-0.563144000
S	-0.199937000	1.841628000	0.090962000
Cl	-1.861452000	-1.012393000	1.483180000
0	-0.129900000	-0.800709000	-1.153428000
Ν	1.023973000	-0.469853000	-0.537265000
С	2.021404000	-1.383462000	-0.588773000
Н	1.752061000	-2.307467000	-1.075921000
С	1.160315000	0.755366000	0.057231000
С	3.451881000	0.144674000	0.553637000
Η	4.411432000	0.391931000	0.988298000
С	2.419423000	1.054040000	0.604813000
Н	2.544013000	2.017168000	1.077770000
С	3.250428000	-1.101527000	-0.052077000
Н	4.032333000	-1.845274000	-0.099706000

References

- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176.
- SMART: Bruker Molecular Analysis Research Tool, Version 5.618; Bruker AXS: Madison, WI, 2000.
- 3. SAINT-NT, Version 6.04; Bruker AXS: Madison, WI, 2001.
- 4. SHELXTL-NT, Version 6.10; Bruker AXS: Madison, WI, 2000.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian 09, Revision C. 01*; Gaussian, Inc.: Wallingford, CT, 2010.
- (a) A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.*, 1988, 88, 899; (b) E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, *NBO*, Version 3.1; Theoretical Chemistry Institute, University of Wisconsin: Madison, 1996.