Electronic Supplementary Information

Efficient functionalization of magnetite nanoparticles with phosphonate using a one-step continuous hydrothermal process

G. Thomas,^a F. Demoisson,^a J. Boudon^a and N.Millot^{a*}

^a Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870 F-21078 DIJON Cedex, France.

* Corresponding author: <u>nmillot@u-bourgogne.fr</u>

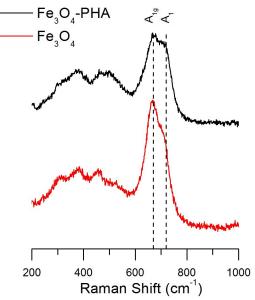


Fig. S1: Raman spectra in the range of 200-1000 cm⁻¹ on Fe_3O_4 and Fe_3O_4 -PHA NPs

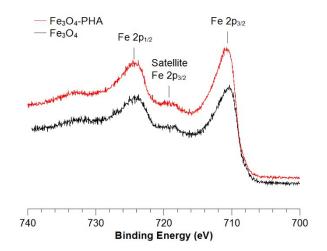


Fig. S2: Normalized XPS spectra of Fe2p collected on Fe_3O_4 and Fe_3O_4 -PHA NPs

	Fe 2p _{1/2} (eV)	Satellite Fe 2p _{3/2} (eV)	Fe 2p _{3/2} (eV)	Δ (Satellite- Fe 2p _{3/2}) (eV)
Fe ₃ O ₄	724.0	718.6	710.4	8.2
Fe ₃ O ₄ -PHA	724.0	718.7	710.5	8.2

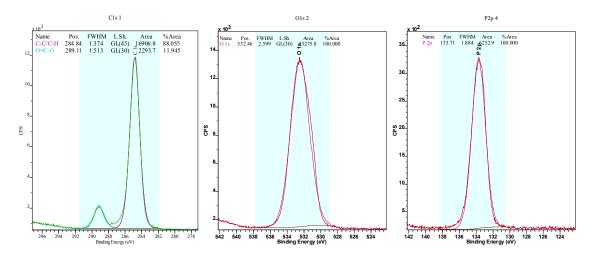


Fig. S3: Normalized XPS spectra of C1s, O1s and P2p collected on PHA molecule

ICP-AES measurements

The sample mass was 10, 07 mg dissolved in a total volume of 10 mL.

The iron and phosphorus contents were determined (after dissolution in HNO₃ and ultrasound treatment) by ICP-AES and led to the following results:

Table S2. Mass concentrations	of Fe and P determined by ICP
-------------------------------	-------------------------------

Iron concentration $^{Fe_{ICP}}$	Phosphorus concentration P_{ICP}	
57.64 %	1.14 %	
580.43 mg/mL	11.48 mg/mL	

Note that ratio of iron over phosphorus is $R_{Fe/P} = \frac{Fe_{ICP}}{P_{ICP}} = 57.6\% / 1.14\% = 50.6\%$

> <u>Calculation of PHA molecule number:</u>

 P_{ICP} is the phosphorus concentration in our sample, 1 mole of PHA (M(PHA) = 6 × 12.011 + 13 × 1.0079 + 5 × 15.9994 + 1 × 30.973761 = 196.14 g/mol) contains 1 mole of phosphorus (M(P) = 30.973761 g/mol).

Number(PHA) = $\frac{P_{ICP} \times N_A}{M(P)}$ = 2.23 × 10²⁰ PHA

With P_{ICP} the phosphorus concentration 11.48 × 10⁻³ g (considering 1 L), N_A the Avogadro number 6.022×10²³ mol⁻¹, M(P) the atomic weight of phosphorus 30.973761 g.mol⁻¹

> Calculation of the $Fe_{3(1-\delta)}O_4$ ($\delta = 0.065$) surface available for PHA grafting:

 Fe _{ICP} is the concentration of iron in our sample made of oxidized magnetite Fe_{3(1−δ)}O₄ (δ = 0.065) ↔ Fe_{2.805}O₄ (M(Fe_{2.805}O₄) = 2.805 × 55.845 + 4 × 15.9994 = 220.64 g/mol) in which there are 2.805 moles of iron. The specific surface area of $Fe_{2.805}O_4$ was determined by BET measurement to be 147 m²/g. As a consequence, the surface developed by our sample is given by the following equation:

Surface
$$(Fe_{3(1-\delta)}O_4) = \frac{Fe_{ICP} \times M(Fe_{2.805}O_4) \times SSA}{2.805 \times M(Fe) \times 10^{-18}} = 12.01 \times 10^{19} \text{ nm}^2$$

With $^{\text{Fe}_{\text{ICP}}}$ the iron concentration 580.4 × 10⁻³ g (considering 1 L), $^{\text{M}(\text{Fe}_{3(1-\delta)}O_4)}$ the molecular weight of oxidized magnetite 220.64 g/mol, $^{\text{SSA}}$ the specific surface area of $\text{Fe}_{3(1-\delta)}O_4$ NPs 147 m².g⁻¹, $^{\text{M}(\text{Fe})}$ the atomic weight of iron 55.845 g/mol

Calculation of PHA coverage on oxidized magnetite:

Subsequently of previous calculations, the coverage of PHA molecules on ${}^{Fe_{3(1-\delta)}O_4}$ corresponds to the ratio of the number of PHA molecules by the available surface of ${}^{Fe_{3(1-\delta)}O_4}$.

Coverage =
$$\frac{\text{Number(PHA)}}{\text{Surface}(\text{Fe}_{3(1-\delta)}\text{O}_4)} = 1.86 \text{ PHA/nm}^2$$

> In short, the PHA coverage can be calculated as follows:

Coverage (PHA/nm²) =
$$\frac{2.805 \times P_{ICP} \times M(Fe) \times N_A \times 10^{-18}}{Fe_{ICP} \times M(P) \times M(Fe_{2.805}O_4) \times SSA}$$

Finally, assuming spherical-shaped NPs with a diameter of $\phi_{\text{TEM}} = 7$ nm, one NP surface is $\pi \phi_{\text{TEM}}^2 = 153.94$ nm². Hence $1.86 \times 153.94 = 286$ PHA/NP. This result is in the same order of magnitudeⁱ than other stabilized iron oxide nanoparticles and about half the theoretical maximum number of phosphonate groups (the footprint of which is determined to be 18.5 Å² by Miles *et al.* or 24 Å² by Daou *et al.*)^{ii,iii} which is estimated to be 153.94×100 / (18.5 or 24) = [641-832] phosphonate max. on 7-nm NPs.

Calculation of the proportion of each phase:

 $Fe_{ICP} = 57.64\%$, so the **proportion of Fe_{2.805}O**₄ = 57.64/(2.805 × 55.845/220.64) = **81.2%** (weight)

 P_{ICP} = 1.14%, so the **proportion of PHA** = 1.14/(30.974/196.14) = **7.2%** (weight)

And so **remaining compounds** such as physisorbed, chemisorbed water *etc.* represent **11.6%** (weight), in good agreement with TGA results (7.9% of physisorbed and chemisorbed water).

With M(Fe) = 55.845 g/mol, $M(Fe_{2.805}O_4) = 220.64$ g/mol, M(P) = 30.974 g.mol⁻¹ and M(PHA) = 196.14 g/mol.

¹ Y. Lalatonne, C. Paris, J. M. Serfaty, P. Weinmann, M. Lecouvey and L. Motte, *Chem. Commun.*, **2008**, 2553-2555

ⁱⁱ W. C. Miles, P. P. Huffstetler, J. D. Goff, A. Y. Chen, J. S. Riffle and R. M. Davis, *Langmuir*, 2011, **27**, 5456-5463

^{III} T. J. Daou, S. Begin-Colin, J. M. Grenèche, F. Thomas, A. Derory, P. Bernhardt, P. Legaré and G. Pourroy, *Chem. Mater.*, 2007, **19**, 4494-4505