Electronic Supplementary Information

Silver(I) complexes with a P-N hybrid ligand and oxyanions: synthesis, structures, photocatalysis and photocurrent responses

Jian-Feng Wang,^a Shi-Yuan Liu,^a Zhi-Gang Ren^{*a} and Jian-Ping Lang^{*,a,b}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

*E-mail: jplang@suda.edu.cn

Table of Contents

Figure S1.	PXRD patterns for 1–5: simulated from single crystal data (Black) and single-phase
	polycrystalline sample (Red)S4
Figure S2.	PXRD patterns for 6 and 7: simulated from single crystal data (Black), single-phase
	polycrystalline sample (Red), and samples after catalyzed the photodegradation of RhB. \cdots S4
Figure S3.	¹ H NMR and ³¹ P{ ¹ H} NMR spectra of 3-bdppmapyS5
Figure S4.	¹ H NMR and ³¹ P{ ¹ H} NMR spectra of compound 1 S6
Figure S5.	¹ H NMR and ³¹ P{ ¹ H} NMR spectra of compound 2S7
Figure S6.	¹ H NMR and ³¹ P{ ¹ H} NMR spectra of compound 3 S8
Figure S7.	¹ H NMR and ³¹ P{ ¹ H} NMR spectra of compound 4 S9
Figure S8.	¹ H NMR and ³¹ P{ ¹ H} NMR spectra of compound 5 S10
Figure S9.	¹ H NMR and ³¹ P{ ¹ H} NMR spectra of compound 6 S11
Figure S10.	¹ H NMR and ³¹ P{ ¹ H} NMR spectra of compound 7S12
Figure S11.	The TGA curves for complexes 1–7.·····S13
Figure S12.	View of a section of the 1D chains of 5 and 7 extending along the <i>a</i> axisS13
Figure S13.	Solid-state absorption spectrum of 3-bdppmapy, 6 and 7 at ambient temperatureS14
Figure S14.	UV-Vis spectra of the mixture of aqueous solution of RhB and 6 after irridiated under UV light
	for 0–4 hours.·····S14
Figure S15.	Proposed mechanism of the catalyzed photodegradation of RhBS14
Figure S16	. Photocurrent responses of 6 on ITO electrode in water or in the solution $(0.1 \text{ mmol} \cdot \text{L}^{-1})$ of
	ascorbic acid (AA) or methyl viologen (MV)S15
Figure S17.	Colour of the crystals of compounds 1 and 2
Figure S18.	Frontier molecular orbitials (HOMO and LUMO) of 3-bdppmapy, 6 and 7 caculated with DFT

on the B3LYP level.		S 1	6	1
---------------------	--	------------	---	---

Figure S1. PXRD patterns for 1–5: simulated from single crystal data (Black) and single-phase polycrystalline sample (Red).

Figure S2. PXRD patterns for **6** and **7**: simulated from single crystal data (Black), single-phase polycrystalline sample (Red), and samples after catalyzed the photodegradation of RhB.

Figure S3. ¹H NMR and ³¹P{¹H} NMR spectra of 3-bdppmapy.

Figure S4. ¹H NMR and ³¹P{ 1 H} NMR spectra of compound 1.

Figure S5. ¹H NMR and ³¹P{ 1 H} NMR spectra of compound 2.

Figure S6. ¹H NMR and ³¹P{ 1 H} NMR spectra of compound 3.

Figure S7. ¹H NMR and ³¹P{¹H} NMR spectra of compound 4.

Figure S8. ¹H NMR and ³¹P{¹H} NMR spectra of compound 5.

Figure S9. ¹H NMR and ³¹P{ 1 H} NMR spectra of compound 6.

Figure S10. ¹H NMR and ³¹P{¹H} NMR spectra of compound 7.

Figure S11. The TGA curves for complexes 1–7.

Figure S12. View of a section of the 1D chains of **5** (Left) and **7** (Right) extending along the *a* axis. All hydrogen atoms are omitted for clarity. Atom color codes: Ag, turquiose; P, pink; N, blue; O, red; C, black.

Figure S13. Solid-state absorption spectrum of 3-bdppmapy, 6 and 7 at ambient temperature.

Figure S14. UV-Vis spectra of the mixture of aqueous solution of RhB and **6** after irridiated under UV light for 0–4 hours.

Figure S15. Proposed mechanism of the catalyzed photodegradation of RhB.

Figure S16. Photocurrent responses of **6** on ITO electrode in water (Green) or in the solution (0.1 mmol·L⁻¹) of ascorbic acid (AA, Purple) or methyl viologen (MV, Pink). Conditions: bias 0.75 V vs SCE, $[Na_2SO_4] = 0.1 \text{ mol}\cdot\text{L}^{-1}$, UV power density = 40 mW·cm⁻².

Figure S17. Colour of the crystals of compounds 1 and 2.

Figure S18. Frontier molecular orbitials (HOMO and LUMO) of 3-bdppmapy, **6** and **7** caculated with DFT on the B3LYP level.