Azobenzene-Derivated *tris* $-\beta$ -Diketonates Lanthanide Complexes:

Reversible *trans*-to-*cis* Photoisomerization in Solution and Solid State

Li-Rong Lin,*, † Xuan Wang, † Gao-Ning Wei, † Hui-Hui Tang, † Hui Zhang, † Li-Hua Ma*, †

- [†] Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- * Department of Chemistry, School of Science and Computer Engineer, University of Houston at Clear Lake, 2700 BAY AREA BLVD, Houston, TX, 77058

1.	Crystal structures for Figures S1–S2Page 1
2.	UV–Vis absorption spectra for Figures S3–S5Page 2
3.	UV–Vis absorption spectral change for Figures S6–S22Page 3-12
4.	The <i>trans-cis</i> photoisomerization kinetics curves Figures S23–33Page13-15
5.	¹ H NMR spectra of compounds Figures S34–43Page 16-19
6.	IR spectra of compounds Figures S44– S53Page 20-23

Figure S1. Crystal structure of Eu(**LB**)₃(CH₃CH₂OH)(H₂O). Selected bonds distances (Å) and angles (°) : Eu1–O1B 2.315(4), Eu1–O2A 2.333(5), Eu1–O2 2.360(4), Eu1–O1A 2.364(4) , Eu1–O1 2.369(4), Eu1–O2B 2.408(4), Eu1–O1W 2.427(5), Eu1–O2C 2.462(4); O1B–Eu1–O2A 95.88(17), O1B –Eu1–O2 141.63(14), O1B –Eu1–O1A 73.67(16), O2A–Eu1–O1A 69.47(14), O1B–Eu1–O1W 142.86(18), O2A–Eu1–O1W 82.10(18), O2–Eu1–O1W 74.99(16), O1B–Eu1–O2C 91.02(17).

Figure S2. Crystal structure of Yb(**LB**)₃ (CH₃CH₂OH)₂. Selected bonds distances (Å) and angles (°) : Yb01–O5 2.229(8), Yb01–O4 2.271(8), Yb01–O3 2.280(6), Yb01–O2 2.279(8), Yb01–O6 2.281(8), Yb01–O1 2.304(8), Yb01–O8 2.344(9), Yb01–O7 2.252(10); O1–Yb01–O7 135.6(6), O2–Yb01–O8 145.7(3), O3–Yb01–O8 69.4(3), O4–Yb01–O2 108.3(3), O5–Yb01–O4 142.6(2), O6–Yb01–O1 136.6(2), O3–Yb01–O6 125.4(3), O5–Yb01–O8 102.1(4).

Figure S3. UV–Vis absorption spectra of LA, LA–Ln(III) and LB, LB–Ln(III) (5.0×10^{-5} mol L⁻¹) in ethanol solutions.

Figure S4. UV–Vis absorption spectra of LA, LA–Ln(III) and LB, LA–Ln(III) (5.0×10^{-5} mol L⁻¹) in hexane solutions.

Figure S5. UV–Vis spectral change of LA in ethanol $(2.0 \times 10^{-5} \text{ mol } L^{-1})$ solution upon irradiation at 365 nm (c) and recoverable irradiation at 450 nm (d) as a function of time.

Figure S6. UV–Vis spectral change of LA in hexane $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ solution upon irradiation at 365 nm (e) and recoverable irradiation at 450 nm (f) as a function of time.

Figure S7. UV–Vis spectral change of **LB** in ethanol $(2.0 \times 10^{-5} \text{mol L}^{-1})$ solution upon irradiation at 365 nm (c) and recoverable irradiation at 450 nm (d) as a function of time.

Figure S8. UV–Vis spectral change of **LB** in hexane $(2.0 \times 10^{-5} \text{mol L}^{-1})$ solution upon irradiation at 365 nm (e) and recoverable irradiation at 450 nm (f) as a function of time.

Figure S9. Absorption spectra of Yb(LA)₃ in acetonitrile solution under no irradiation, and in the photostationary states after alternating irradiation at $\lambda = 365$ and $\lambda = 450$ nm in repeating switching cycles (Inset: reversible change of absorption intensity at 358 nm).

Figure S10. UV–Vis spectral change of Yb(LA)₃ in ethanol (2.0×10^{-5} mol L⁻¹) solution upon irradiation at 365 nm (c) and recoverable irradiation at 450 nm (d) as a function of time.

Figure S11. UV–Vis spectral change of Yb(LA)₃ in hexane (2.0×10^{-5} mol L⁻¹) solution upon irradiation at 365 nm (e) and recoverable irradiation at 450 nm (f) as a function of time.

Figure S12. UV–Vis spectral change of La(LA)₃ in acetonitrile(a, b), ethanol (c, d) and hexane (e, f) (2.0×10^{-5} mol L⁻¹) solutions upon irradiation at 365 nm (a, c, e) and recoverable irradiation at 450 nm (b, d, f) as a function of time.

Figure S13. UV–Vis spectral change of $Eu(LA)_3$ in acetonitrile(a, b), ethanol (c, d) and hexane (e, f) (2.0× 10⁻⁵mol L⁻¹) solutions upon irradiation at 365 nm (a, c, e) and recoverable irradiation at 450 nm (b, d, f) as a function of time.

Figure S14. UV–Vis spectral change of $Gd(LA)_3$ in acetonitrile(a, b), ethanol (c, d) and hexane (e, f) (2.0× 10⁻⁵mol L⁻¹) solutions upon irradiation at 365 nm (a, c, e) and recoverable irradiation at 450 nm (b, d, f) as a function of time.

Figure S15. UV–Vis spectral change of Yb(LB)₃ in acetonitrile $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ upon irradiation at 365 nm (a) and recoverable irradiation at 450 nm (b) as a function of time.

Figure S16. UV–Vis spectral change of $La(LB)_3$ in acetonitrile (a, b), ethanol (c, d) and hexane (e, f) (2.0× 10⁻⁵mol L⁻¹) solutions upon irradiation at 365 nm (a, c, e) and recoverable irradiation at 450 nm (b, d, f) as a function of time.

Figure S17. UV–Vis spectral change of $Eu(LB)_3$ in acetonitrile (a, b), ethanol (c, d) and hexane (e, f) (2.0× 10⁻⁵mol L⁻¹) solutions upon irradiation at 365 nm (a, c, e) and recoverable irradiation at 450 nm (b, d, f) as a function of time.

Figure S18. UV–Vis spectral change of $Gd(LB)_3$ in acetonitrile (a, b), ethanol (c, d) and hexane (e, f) (2.0× 10^{-5} mol L⁻¹) solutions upon irradiation at 365 nm (a, c, e) and recoverable irradiation at 450 nm (b, d, f) as a function of time.

Figure S19. UV–Vis spectral change of Yb(LB)₃ in acetonitrile (a, b), ethanol (c, d) and hexane (e, f) (2.0×10^{-5} mol L⁻¹) solutions upon irradiation at 365 nm (a, c, e) and recoverable irradiation at 450 nm (b, d, f) as a function of time.

Figure S20. UV–Vis spectral change of La(LA)₃ in PMMA film (5.0wt%) upon irradiation at 365 nm and recoverable irradiation at 450 nm (Inset: reversible change of absorption intensity at 358 nm in the photostationary states after alternating irradiation at $\lambda = 365$ and $\lambda = 450$ nm in repeated switching cycles).

Figure S21. UV–Vis spectral change of Eu(LA)₃ in PMMA film (5.0wt%) upon irradiation at 365 nm (a) and recoverable irradiation at 450 nm (b) (Inset: reversible change of absorption intensity at 358 nm in the photostationary states after alternating irradiation at $\lambda = 365$ and $\lambda = 450$ nm in repeated switching cycles).

Figure S22. UV–Vis spectral change of Gd(LA)₃ in PMMA film (5.0wt%) upon irradiation at 365 nm (a) and recoverable irradiationat 450 nm (b) (Inset: reversible change of absorption intensity at 358 nm in the photostationary states after alternating irradiation at $\lambda = 365$ and $\lambda = 450$ nm in repeated switching cycles).

Figure S23. The *trans-cis* photoisomerization kinetics of $\ln(A\infty - A_0)/(A\infty - At)$ as a function of time for LA in different solvents.

Figure S24. The *trans-cis* photoisomerization kinetics of $\ln(A\infty - A_0)/(A\infty - At)$ as a function of time for **LB** in acetonitrile.

Figure S25. The *trans-cis* photoisomerization kinetics of $\ln(A\infty-A_0)/((A\infty-At))$ as a function of time for La(LA)₃ in different solvents.

Figure S26. The *trans-cis* photoisomerization kinetics of $\ln(A\infty-A_0)/((A\infty-At))$ as a function of time for Eu(LA)₃ in different solvents.

Figure S27. The *trans-cis* photoisomerization kinetics of $\ln(A\infty - A_0)/((A\infty - At))$ as a function of time for Gd(LA)₃ in different solvents.

Figure S28. The *trans-cis* photoisomerization kinetics of $\ln(A\infty-A_0)/((A\infty-At))$ as a function of time for Yb(LA)₃ in different solvents.

Figure S29. The *trans-cis* photoisomerization kinetics of $\ln(A\infty-A_0)/((A\infty-At))$ as a function of time for La(LB)₃ in hexane solution.

Figure S30. The *trans-cis* photoisomerization kinetics of $\ln(A\infty-A_0)/((A\infty-At))$ as a function of time for Eu(**LB**)₃ in different solvents.

Figure S31. The *trans-cis* photoisomerization kinetics of $\ln(A\infty - A_0)/((A\infty - At))$ as a function of time for Gd(**LB**)₃ in different solvents.

Figure S32. The *trans-cis* photoisomerization kinetics of $\ln(A\infty - A_0)/((A\infty - At))$ as a function of time for Yb(**LB**)₃ in different solvents.

Figure S33. The *trans-cis* photoisomerization kinetics of $\ln(A\infty-A_0)/((A\infty-At))$ as a function of time for La(LA)₃, Eu(LA)₃, Gd(LA)₃ and Yb(LA)₃ in PMMA film.

Figure S34. ¹H NMR spectrum of A compound in CDCl₃.

Figure S35. ¹H NMR spectrum of LA ligand in CDCl₃.

Figure S36. ¹H NMR spectrum of **B** compound in CDCl₃.

Figure S37. ¹H NMR spectrum of LB ligand in CDCl₃.

Figure S38. ¹H NMR spectrum of complex La(LA)₃ in CDCl₃.

Figure S39. ¹H NMR spectrum of complex Eu(LA)₃ in DMSO-*d*₆.

Figure S40. ¹H NMR spectrum of complex Yb(LA)₃ in CDCl₃.

Figure S41.¹H NMR spectrum of complex La(LB)₃ in DMSO-*d*₆.

Figure S42. ¹H NMR spectrum of complex Eu(LB)₃ in CDCl₃.

Figure S43. ¹H NMR spectrum of complex Yb(LB)₃ in CDCl₃.

Figure S44. IR spectrum of LA ligand in KBr pellet.

Figure S45 IR spectrum of complex $La(LA)_3$ in KBr pellet.

Figure S46. IR spectrum of complex $Eu(LA)_3$ in KBr pellet.

Figure S47. IR spectrum of complex $Gd(LA)_3$ in KBr pellet.

Figure S48. IR spectrum of complex $Yb(LA)_3$ in KBr pellet.

Figure S49. IR spectrum of complex LB ligand in KBr pellet.

Figure S50. IR spectrum of complex $La(LB)_3$ in KBr pellet.

Figure S51. IR spectrum of complex $Eu(LB)_3$ in KBr pellet.

Figure S52. IR spectrum of complex $Gd(LB)_3$ in KBr pellet.

Figure S53. IR spectrum of complex $Yb(LB)_3$ in KBr pellet.