## **Electronic Supporting Information**

## Regioisomerism in cationic sulfonyl-substituted [Ir(C^N)<sub>2</sub>(N^N)]<sup>+</sup> complexes: influence on photophysical properties and LEC performance

Cathrin D. Ertl,<sup>a</sup> Lidón Gil-Escrig,<sup>b</sup> Jesús Cerdá,<sup>b</sup> Antonio Pertegás,<sup>b</sup> Henk J. Bolink,<sup>b</sup> José M. Junquera-Hernández,<sup>b</sup> Alessandro Prescimone,<sup>a</sup> Markus Neuburger,<sup>a</sup> Edwin C. Constable,<sup>a</sup> Enrique Ortí<sup>\*b</sup> and Catherine E. Housecroft<sup>\*a</sup>

<sup>a</sup> Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
<sup>b</sup> Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, Paterna, E-46980, Spain.



**Fig. S1** Normalized photoluminescence spectra of complexes  $[Ir(C^N)_2(bpy)][PF_6]$  with  $C^N = [1]^-$  to  $[3]^-$  in the thin film configuration used in LEC devices. The complex is mixed with the ionic liquid  $[Bmim][PF_6]$  in a complex:IL 4:1 molar ratio.



**Fig. S2**. Cyclic voltammograms showing the first oxidation and reduction processes of  $[Ir(C^N)_2(bpy)][PF_6]$  (C<sup>N</sup> = [1]<sup>-</sup>, [2]<sup>-</sup> or [3]<sup>-</sup>) in MeCN solution referenced to Fc/Fc<sup>+</sup> with 0.1 M [<sup>n</sup>Bu<sub>4</sub>][PF<sub>6</sub>] as supporting electrolyte and a scan rate of 0.1 V s<sup>-1</sup>.



**Fig. S3** Theoretical simulation of the absorption spectrum of complexes  $[Ir(C^N)_2(bpy)][PF_6]$  with  $C^N = [1]^-$  to  $[3]^-$  obtained from TD-DFT/B3LYP/(6-31G\*\* + LANL2DZ) calculations of the 40 lowestenergy singlet excited states. The spectra have been obtained as convoluted sums of Lorentzian curves. Each curve is centered on the wavelength value calculated for a singlet excited state, and its area is proportional to the oscillator strength.



**Fig. S4** Normalized electroluminescence spectra of ITO/PEDOT:PSS/active layer/Al LEC devices measured by applying a block-wave pulsed current of 100 A m<sup>-2</sup> at a frequency of 1 kHz and duty cycles of 50%. Active layer:  $[Ir(C^N)_2(bpy)][PF_6]$  (C<sup>N</sup> = [1]<sup>-</sup> to [3]<sup>-</sup>) :  $[Bmim][PF_6]$  4:1 molar ratio.

**Table S1** Lowest singlet excited states calculated at the TD-DFT B3LYP/(6-31G\*\*+LANL2DZ) level for complexes  $[Ir(1)_2(bpy)]^+$ ,  $[Ir(2)_2(bpy)]^+$  and  $[Ir(3)_2(bpy)]^+$  in acetonitrile. Vertical excitation energies (*E*), oscillator strengths (*f*), dominant monoexcitations with contributions (within parentheses) greater than 20% and description of the excited state. H and L denote HOMO and LUMO, respectively.

| Complex                                          | State                 | <i>E</i> (eV/nm) | f     | Monoexcitations          | Description            |
|--------------------------------------------------|-----------------------|------------------|-------|--------------------------|------------------------|
| [lr( <b>1</b> ) <sub>2</sub> (bpy)] <sup>+</sup> | S <sub>1</sub>        | 2.81/441         | 0.000 | $H \rightarrow L (98)$   | <sup>1</sup> MLCT/LLCT |
|                                                  | S <sub>2</sub>        | 3.12/397         | 0.067 | $H \rightarrow$ L+1 (97) | <sup>1</sup> LC        |
|                                                  | S <sub>5</sub>        | 3.55/349         | 0.097 | H-1 $\rightarrow$ L (50) | <sup>1</sup> MLCT/LLCT |
| [lr( <b>2</b> ) <sub>2</sub> (bpy)] <sup>+</sup> | S <sub>1</sub>        | 2.89/429         | 0.000 | $H \rightarrow L (99)$   | <sup>1</sup> MLCT/LLCT |
|                                                  | S <sub>2</sub>        | 3.30/375         | 0.058 | $H \rightarrow$ L+1 (96) | <sup>1</sup> LC        |
|                                                  | S <sub>5</sub>        | 3.55/350         | 0.084 | $H-1 \rightarrow L(51)$  | <sup>1</sup> MLCT/LLCT |
| [lr( <b>3</b> ) <sub>2</sub> (bpy)] <sup>+</sup> | S <sub>1</sub>        | 2.79/445         | 0.000 | $H \rightarrow L (98)$   | <sup>1</sup> MLCT/LLCT |
|                                                  | S <sub>2</sub>        | 3.05/406         | 0.067 | $H \rightarrow$ L+1 (97) | <sup>1</sup> LC        |
|                                                  | <b>S</b> <sub>5</sub> | 3.53/351         | 0.084 | H-1 $\rightarrow$ L (50) | <sup>1</sup> MLCT/LLCT |