First heterometallic Ga^{III}-Dy^{III} single-molecule magnets: Implication of

Ga^{III} in extracting Fe-Dy interaction

Sihuai Chen, *a,b Valeriu Mereacre, *a Christopher E. Ansona and Annie K. Powell*a,c

^{a.}Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe, Germany. E-mail: valeriu.mereacre@kit.edu, annie.powell@kit.edu

^b-State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. E-mail: chensihuai@fjirsm.ac.cn

^{c.}Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Supporting Information

Fig. S1 X-ray powder diffraction patterns for compounds 1-3 (left) and 4-6 (right).

Fig. S2 Field dependence of the magnetization at different temperatures for compounds **2** (left) and **3** (right).

Fig. S3 Arrhenius plot using ac data under zero dc field for compound 2.

Fig. S4 Cole-Cole plots under zero dc field for compound 2.

Fig. S5 Arrhenius plot using ac data under 1500 Oe dc field for compound 2.

Fig. S6 Cole-Cole plots under 1500 Oe dc field for compound 2.

Fig. S7 Field dependence of the magnetization at different temperatures for compounds **5** (left) and **6** (right).

Fig. S8 Temperature dependence of the in-phase (χ') (blue) and out-of-phase (χ'') (red) ac susceptibility components at 1000 Hz under zero dc field for **5**.

Fig. S9 Frequency dependence of the in-phase (χ') (left) and out-of-phase (χ'') (right) ac susceptibility components under the indicated dc fields at 1.8 K for **5**.

Fig. S10 Arrhenius plot using ac data under 1000 Oe dc field for compound 5.