Electronic Supplementary Information

for

A first-principle study of the tuning effect of Fe₂O₃ cluster on the dehydrogenation properties of LiBH₄(001) surface

Chuan Liu^{a,b}, Shiping Huang^{a,*}

 ^a State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
 ^b College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, Anhui Province, 233100, China

E-mail: <u>huangsp@mail.buct.edu.cn</u>

	Table of Contents	Page no.	
Section S1	Model and calculating considerations	S3	
Section S2	Density of state of Fe2-B2H ₄ ⁻ subject	S 3	
Figure S1	The calculated total and partial density of states for $\mathrm{Fe_2O_3}$		
	cluster doped LiBH ₄ (001) surface. The selected atoms are	S4	
	H6, B2, Li2, Fe2, and O3 atoms (labeled in Fig. 1b),		
	respectively.		
Section S3	Hydrogen removal energy	S4	
Figure S2	Top view of the top two layers of the optimized structure of		
	Fe_2O_3 cluster doped LiBH ₄ (001) surface.	33	
Table S1	The calculated hydrogen removal energy for these specific		
	H atoms (labeled in Fig. S2).	30	

Section S1. Model and calculating considerations

The optimized bulk LiBH₄ was used as a basis for constructing surface slab of LiBH₄. The surface model of LiBH₄ (001) surface studied here was a $2\times2\times1$ supercell slab consisting of six layers of LiBH₄ formula units and had a total number of 144 atoms (24 LiBH₄ formula units). Fe₂O₃ cluster was placed at different positions and directions on LiBH₄ (001) surface to generate the optimized lowest-energy structures. The static total energy and electronic properties calculations were performed based on the optimized lowest-energy structures geometries. The method to calculate hydrogen removal energy is that we firstly remove one H atom out from the optimized Fe₂O₃ cluster doped LiBH₄ (001) surface and then optimize the H atom removed structures. The difference of total energy between the H atom removed and unremoved optimized structures is defined as hydrogen removal energy.

Section S2. Density of state of Fe2-B2H₄⁻ subject

The states of H6 *s*, B2 *p*, and Fe2 *d* orbitals are all smaller than those of H1, B1, and Fe1 atoms, which demonstrates the hybridizations of H6 *s*, B2 *p*, and Fe2 *d* orbitals is weaker than the hybridizations of H1 *s*, B1 *p*, and Fe1 *d* orbitals. Thus, it is no doubt that the interaction between Fe2 and B2H₄⁻ unit is weaker than the interaction between Fe1 and B1H₄⁻ units. A new peak arise at -1.75 eV due to the coupling effect of the spin-unrestricted Fe *d* orbitals. However, the peaks at -1.75 eV in the partial DOSs of H6 and B2 atoms are smaller than those of H1 and B1 atoms, which also verifies that the interaction between Fe2 and B2H₄⁻ unit is weaker than the interaction between Fe2 and B2H₄⁻ unit is weaker than the interaction between Fe2 and B2H₄⁻ unit is weaker than between Fe2 at -1.75 eV in the partial DOSs of H6 and B2 atoms are smaller than those of H1 and B1 atoms, which also verifies that the interaction between Fe2 and B2H₄⁻ unit is weaker than the interaction between Fe2 and B2H₄⁻ unit is weaker than the interaction between Fe2 and B2H₄⁻ unit is weaker than the interaction between Fe2 and B2H₄⁻ unit is weaker than the interaction between Fe2 and B2H₄⁻ unit is weaker than the interaction between Fe1 and B1H₄⁻ units.

Figure S1: The calculated total and partial density of states for Fe_2O_3 cluster doped LiBH₄ (001) surface. The selected atoms are H6, B2, Li2, Fe2, and O3 atoms (labeled in Fig. 1b), respectively.

Section S3. Hydrogen removal energy

Hydrogen removal energy is successfully used to explain the bond strength of X-H in the complex hydrogen storage materials. In order to sturdy the doping of Fe_2O_3 cluster on the bond strength of B-H bonds in LiBH₄ (001) surface, we calculate hydrogen removal energies of these H atoms in the top two layer of Fe_2O_3 cluster doped LiBH₄ (001) surface. The studied H atoms are labeled in Fig. S2, and the calculated results are listed in Table S1.

Figure S2: Top view of the top two layers of the optimized structure of Fe_2O_3 cluster doped LiBH₄ (001) surface.

 Table S1 The calculated hydrogen removal energy for these specific H atoms (labeled

•	T .	(\mathbf{a}, \mathbf{a})
110	Lina	C 11
	FIV	5/1
	1 15.	
	<u> </u>	

H atom	Removal	LI atom	Removal	U atom	Removal
	energy (eV)	пают	energy (eV)	n atoili	energy (eV)
H9	0.05	H17	0.65	H25	0.24
H10	0.05	H18	0.15	H26	0.25
H11	2.33	H19	0.11	H27	0.32
H12	0.07	H20	0.13	H28	0.16
H13	2.27	H21	0.24	H29	0.09
H14	2.25	H22	0.16	H30	0.17
H15	2.27	H23	0.28	H31	0.38
H16	2.25	H24	0.15	H32	0.05