A Ruthenium Racemization Catalyst for Synthesis of Primary Amines from Secondary Amines: Catalysis and Deactivation

Dennis Pingen,^a Cigdem Altintas, Max Schaller, Dieter Vogt.^{b*}

^a Dr. D.L.L. Pingen, Chemical Materials Science, Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany

^b Prof Dr. D. Vogt, EaStCHEM, School of Chemistry, University of Edinburgh, King's Buildings, Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK, E-mail: <u>D.Vogt@ed.ac.uk</u>

Contents

General considerations	2
Synthesis	2
Catalysis	3
Spectroscopy	4
Mass spectrometry	15
GC-Analysis	26
References	26

General Considerations

All work was carried out under standard Schlenk conditions under argon; all solvents were dried, degassed and purged with Ar prior to use. All used glassware was pre-dried at 120°C and heated with a heat gun while purged with Ar prior to use. Chemicals were purchased from Sigma-Aldrich and Strem and were used as received. All reactions were performed in a magnetically stirred home-made stainless steel autoclave equipped with manometer, temperature controller and sampling unit (50µL samples). The reactions were all performed in triplo, and these results where within an experimental error. ¹H, ¹³C, ³¹P NMR spectra were recorded on a Bruker Avance 400 MHz with broad band inverse detection probe and a Bruker Avance 500 MHz with dual channel cryo probe optimized for ¹³C/¹H (DCH). Chemical shifts are reported in ppm using TetraMethylSilane (TMS) as reference. All NMR experiments have been performed under inert atmosphere is airtight Wilmad Young NMR quartz tubes. GC-analyses were performed on a Shimadzu GC-2010 equipped with an Ultra-2 column. Ammonia of purity grade N4.7 was used and was introduced to the autoclaves using a Bronkhorst liquiFlow mass-flow controller (MFC). FT-IR spectra were recorded *in situ* on a Shimadzu 8300 equipped with a home-made autoclave with a built-in ZnS path length window.

Synthesis

Synthesis of 1,2,3,4,5-Pentaphenylcyclopentadiene:^[1]

A three-neck round-bottom flask was charged with magnesium turnings (0.513 g, 20 mmol) and THF (5 ml). A solution of PhBr (3.807 g, 23 mmol) in THF (20 ml) was added drop wise into the stirring solution. This mixture was stirred for one hour and a solution of 2,3,4,5-tetraphenylcyclopentadienone (5.049 g, 13 mmol) in THF (20 ml) was added via a dropping funnel. 10 ml of extra THF were necessary to wash all 2,3,4,5-tetraphenylcyclopentadienone back into the mixture. After 2.25 h of stirring, LiAlH₄ (1.45 g, 35 mmol) was added in portions. After two more hours, the reaction was quenched using NH₄Cl (18.6g, 0.35mol) in H₂O which had been prepared in the meanwhile. Following that, the mixture was transferred into a separation funnel and dichloromethane was added. After five washes the organic layer was dried over MgSO₄. After filtration the solvent was removed in vacuum. The product was obtained as a pale white-yellow powder. NMR. ¹H NMR (298 K, 400 MHz, CDCl₃, δ =ppm): 7.23 (t, 2H, Ph), 7.22 (d, 2H, Ph), 7.17 (m, 8H, Ph), 7.12 (d, 1H, Ph), 7.05 (m, 8H, Ph), 7.00 (m, 4H, Ph) 5.08 (s, 1H, Cp). ¹³C NMR (298 K, 100.6 MHz, CDCl₃): 144.02, 136.16, 135.82, 130.13, 129.03, 128.57, 127.69, 126.96.

Synthesis of $(\eta^5$ -CpPh5) Ru(CO)₂H:^[1]

1,2,3,4,5-pentaphenylcyclopentadiene (2 g, 4.4 mmol) and $[Ru_3(CO)_{12}]$ (1 g, 1.56 mmol) were put in a 50 ml Schlenk tube and flushed with Ar. Afterwards, decane (12 ml) and toluene (6 ml) were added and the mixture was heated for 2.5 days at 160°C. After cooling to room temperature it was washed with pentane and dried in vacuum. The obtained powder was of dark brown colour. ¹H NMR (298 K, 400 MHz, CDCl₃, δ =ppm): 7.23 (t, 10H, Ph), 7.13 (t, 10H, Ph), 7.05 (d, 5H, Ph), -9.84 (s, 1H, RuH). ¹³C NMR (298 K, 100.6 MHz, CDCl₃): 196.89 (CO), 132.16, 129.54, 128.36, 127.82, 106.46 .IR (cm⁻¹): 2009, 1952 (CO).

Synthesis of $(\eta^5 - CpPh_5)Ru(CO)_2Cl$:^[1]

1,2,3,4,5-pentaphenylcyclopentadiene (0.27 g, 0.6 mmol) and $[Ru_3(CO)_{12}]$ (0.143 g, 0.22 mmol) were put in a 20 ml Schlenk tube and flushed with argon. Afterwards decane (1.6 ml) and toluene (0.82 ml) were

added and the mixture was heated for 2.5 days at 160°C. After cooling to room temperature CHCl₃ (2 ml) was added and the mixture was heated to 160°C for 1.25 h. After cooling to room temperature it was washed with pentane and dried in vacuum. The obtained powder was yellow. ¹H NMR (298 K, 400 MHz, CDCl₃, δ =ppm): 7.23 (t, 10H, Ph), 7.13 (t, 10H, Ph), 7.07 (d, 5H, Ph). ¹³C NMR (298 K, 100.6 MHz, CDCl₃): 196.92 (CO), 132.20, 129.59, 128.40, 127.85, 106.50. ESI-MS: 639.1709 (M+H).

Synthesis of $(\eta^5 - CpPh_5)Ru(CO)(PPh_3)Cl:^{[2]}$

A Schlenk tube was charged with (η^5 -CpPh₅) Ru(CO)₂Cl (103 mg) and PPh₃ (49 mg). Dichloromethane (2.5 ml) was added as solvent. Trimethylamine-N-oxide (23.5 mg) was dissolved in acetonitrile (1 ml) in another Schlenk tube. The acetonitrile solution was slowly added to the dichloromethane solution and the mixture was stirred for 15 minutes at room temperature. The colour changed from yellow via orange to dark red during the addition. The mixture was filtered over silica employing dichloromethane as solvent. A red powder was obtained after evaporating the solvents. ¹H NMR (298 K, 300 MHz, CDCl₃, δ =ppm): 7.48 (t, 6H, Ph), 7.34 (t, 3H, Ph), 7.16 (t, 6H, Ph), 7.11 (t, 5H, Ph), 6.92 (t, 10H, Ph), 6.81 (d, 10H, Ph). ¹³C NMR (298 K, 100.6 MHz, CDCl₃): 132.38, 127.93, 127.27, 127.17. ³¹P NMR (298K, 161.9 MHz, CDCl₃): 39.08. ESI-MS: 575.1061 (M-CI-PPh₃).

Catalysis

General procedure for the splitting of secondary amines:

A 75 ml stainless-steel autoclave is charged with 2 mol% of complex and purged with Ar. Secondary amine and t-amylalcohol were added via syringe. The autoclave is closed and liquid NH_3 was added via a mass flow controller (MFC). The mixture was heated to 170°C for the 23.5 h time.

Complex	Time (h)	NH ₃ (mL), eq	Conversion (%)	Primary Amine (%) ^c	Primary Amine Selectivity (%) ^c
1	24	5, 120	81.5±5	76.5±4	94
2 ^a	24	5, 120	22.5±2	22.5±2	100
3	24	5, 120	26.5±2	25.0±2	94
1+KO ^t Bu	23.75	15, 120	0	0	0
1	21	0.5, 12	54±3	53±3	98
2	21	0.5, 12	13±1	11±1	85
3	21.5	0.5, 12	68.5±4	62±3	90
1+KO ^t Bu	21.5	0.5, 12	23.5±2	23.5±2	100

Table S1: Catalyst screening

Complex (2 mol%), dicyclohexylamine (1.5 mmol), tert-amyl alcohol (3 mL), NH₃(l), 170°C. a) 0.75 mL MTBE as co-solvent. b) 2 mol% KO^tBu added. c) standard deviation over 3 experiments.

Entry	Time (h)	NH ₃ (mL), eq	Conversion (%) ^c	Primary Amine (%) ^c
1	23.5	5, 120	81.5±5	76.5±4
2	21	2.5, 60	82.5±3	78±2
3	23.5	5,40	61	58.5±3
4	24	2.5, 20	51±3	47.5±2
5	21	0.5, 12	54±3	53±2
6	23.5	0.5, 4	16.5±1	15.5±1

Table S2: Ammonia Excess Screening

Complex 1 (2 mol%), dicyclohexylamine (1.5 mmol), tert-amyl alcohol (3 mL), $NH_3(l)$, 170°C. a) 0.75 mL MTBE as co-solvent. b) 2 mol% KO'Bu added. c) standard deviation over 3 experiments.

Table S3: Screening of complex 3

Entry	Time (h)	NH ₃ (eq)	Conversion (%) ^a	Primary Amine (%) ^a
1	24	4	15±1	6±1
2	21.5	12	68.5±3	62±2
3	23	20	29±2	27.5±2
4	23	60	26±2	26±2
5	24	120	26.5±2	25.0±2

Complex 3 (2 mol%), dicyclohexylamine (1.5 mmol), tert-amyl alcohol (3 mL), NH₃(l), 170°C. a) standard deviation over 3 experiments.

Entry	Time	NH ₃ (mL), eq	Conversion (%) ^a	Primary Amine (%) ^a
1	23.5	0.5, 4	42±3	39.5±4
2	21.5	0.5, 12	23.5±2	23.5±2
3	24	2.5, 20	63.5±1	58±2
4	23.5	5, 40	18±1	17±1
5	23.75	7.5, 60	6.5±1	6.5±1
6	23.75	15, 120	0	0

Table S4: Effect of the base at different amounts of ammonia

Complex **1** (2 mol%, 0.03 mmol), dicyclohexylamine (1.5 mmol), KO'Bu (2 mol%, 0.03 mmol) tert-amyl alcohol (3 mL), NH₃(l), 170°C. a) standard deviation over 3 experiments.

Table S5: Reaction temperature of 150°C in the splitting of dicyclohexylamine

Entry	Time	NH ₃ (mL), eq	Conversion (%) ^a	Primary Amine (%) ^a
1	16	2.5, 20	26±2	22±2
2	24	5, 120	41±3	39±3

Complex **1** (2 mol%, 0.03 mmol), dicyclohexylamine (1.5 mmol), KO'Bu (2 mol%, 0.03 mmol) tert-amyl alcohol (3 mL), NH₃(l), 150°C. a) standard deviation over 3 experiments.

Spectroscopy

Procedure for the NMR reactions:

Reaction of complex 1 with cyclohexylamine:

Into a Wilmad-Young NMR tube, complex **1** (0.073 mmol, 46.6 mg) was weighed and dissolved in CDCl₃. ¹H and ¹³C NMR spectra were recorded and after that, 10 eq. cyclohexylamine (0.73 mmol, 63 μ L) were added. Again, both ¹H and ¹³C NMR were recorded and the mixture was left at room temperature for 18h. After this time, both ¹H and ¹³C were recorded. The mixture was heated to 60°C for 1 h.

Reaction of complex 1 with secondary amine and primary amine:

In a Wilmad-Young NMR tube, complex **1** (0.09 mmol, 32.7 mg) was weighed and dissolved in CDCl₃. ¹H and ¹³C NMR spectra were recorded and after that, 10 eq. dicyclohexylamine (0.5 mmol, 99.4 μ L) were added. Again, both ¹H and ¹³C NMR were recorded and the mixture was heated to 60°C for 4 h. Spectra were recorded again and the mixture was continued to heat at 60°C for 4 days. ¹H and ¹³C NMR revealed no change.

Reaction of complex 1 with ammonia and cyclohexylamine:

In a 15 mL stainless steel autoclave, complex **1** (0.09 mmol, 57 mg) was placed. $CDCl_3$ was added to dissolve the mixture and NH₃ (2.5 mL, 90 mmol) was subsequently added via a Mass Flow controller. The autoclave was closed and heated to 170°C for 1.45 h. After cooling to room temperature, the resulting mixture was transferred to a Wilmad-Young NMR tube and ¹H and ¹³C NMR were recorded. After that, 10 eq. cyclohexylamine (0.9 mmol, 89 mg, 0.1 mL) were added. Again, both ¹H and ¹³C NMR were recorded and the mixture was left at room temperature for 18h. After this time, both ¹H and ¹³C were recorded.

Reaction of complex 3 with cyclohexylamine:

In a Wilmad-Young NMR tube, complex **3** (0.05 mmol, 39.1 mg) was weighed and dissolved in CDCl₃. ¹H and ¹³C NMR spectra were recorded and after that, 11.4 eq. cyclohexylamine (65 μ L, 0.57 mmol) were added. Both ¹H and ¹³C NMR were recorded and the mixture was left at room temperature for 18h. After this time, both ¹H and ¹³C NMR were recorded. The mixture was heated to 90°C for 6 h. Again, both ¹H and ¹³C NMR were recorded. The mixture was heated again to 90°C for 2 days before recording the spectra again.

In situ FT-IR monitoring

In a home-made stainless steel autoclave equipped with a ZnS path length cell, 6 mL CHCl₃ (dry degassed) was placed and a background was recorded for further use. At the same time, complex 1 (0.1 mmol, 63.8 mg) was weighed into a Schlenk tube and dissolved in dry degassed CHCl₃. The autoclave was emptied and dried before purging it with Ar again. The solution of complex 1 was transferred to the autoclave and a spectrum was recorded again. After this, cyclohexylamine (1 mmol, 115 μ L) was added and the autoclave was sealed and heated to 40°C. Spectra were recorded with 15 minutes time intervals.

NMR spectroscopy

Figure S1: ¹H NMR (CDCl₃, 400 MHz, 298K) of complex 1 with 10 eq. of cyclohexylamine immediately after the addition. The peak at 1,81ppm resembles the free amine

Figure S2: ¹H NMR (CDCl₃, 400 MHz, 298K) of complex 1 with 10 eq. of cyclohexylamine after 18 h at r.t.. The peak originated form 2.09 ppm is now shifted completely to 2.58 ppm.

Figure S3: ¹H NMR (CDCl₃, 400 MHz, 298K) of complex 1 with 10 eq. of cyclohexylamine after 18 h at r.t. followed by 1 h at 60°C. The peak originated form 2.58 ppm is now shifted completely to 2.74 ppm.

Figure S4: ¹H (500 MHz, CDCl₃, 298K) spectrum of Ru(CpPh₅)(CO)₂Cl (1) after the reaction with NH₃ (170°C, 1.45 h, CDCl₃). The peak at 0.57 ppm is free NH₃; coordinated NH₃ can be found at 3.36 and 2.80 ppm.

Figure S5: ¹³C NMR (125.73 MHz, CDCl₃. 298 K) spectrum of Ru(CpPh₅)(CO)₂Cl (1) after the reaction with NH₃ followed by addition of 10 eq. n-hexylamine at r.t..

Figure S6: ¹H (500 MHz, CDCl₃, 298K) spectrum of Ru(CpPh₅)(CO)₂Cl (1) after the reaction with NH₃ followed by the addition of 10 eq. cyclohexylamine. The peak at 0.66 ppm is free NH₃; coordinated cyclohexylamine can be found at 2.54 ppm.

Figure S7: ¹H (500 MHz, CDCl₃, 298K) spectrum of Ru(CpPh₅)(CO)₂Cl (1) immediately after the addition of 10 eq. dicyclohexylamine.

Figure S8: ¹³C NMR (125.73 MHz, CDCl₃) spectrum of Ru(CpPh₅)(CO)₂Cl with 10 eq. dicyclohexylamine after 18 h at r.t..

Figure S9: ¹H (500 MHz, CDCl₃, 298K) spectrum of $Ru(CpPh_5)(CO)_2Cl(1)$ after the addition of 10 eq. dicyclohexylamine and heated to 60°C for 4 h.

Figure S10: ¹H (500 MHz, CDCl₃, 298K) spectrum of Ru(CpPh₅)(CO)₂Cl (1) after the addition of 10 eq. dicyclohexylamine and heated to 60°C for 4 days.

Figure S11: ¹³C NMR (125.73 MHz, CDCl₃, 298 K) spectrum of $Ru(CpPh_5)(CO)_2Cl(1)$ with 10 eq. cyclohexylamine after 4 h at 60°C.

Figure S12: ¹³C NMR (125.73 MHz, CDCl₃, 298 K) spectrum of Ru(CpPh₅)(CO)₂Cl (1) with 10 eq. n-hexylamine after 6 h at 90°C.

Figure S13: ¹³C NMR (125.73 MHz, CDCl₃. 298 K) spectrum of Ru(CpPh₅)(CO)₂Cl (1) with 10 eq. n-hexylamine after 6h at 90°C (zoomed carbonyl region).

Figure S14: ¹³C NMR (125.7 MHz, 298 K, CDCl₃, 298 K) spectrum of Ru(CpPh₅)(CO)(PPh₃)Cl (3). J_{CP}=25.8 Hz.

Figure S15: ¹³C NMR (125.73 MHz, CDCl₃, 298 K) spectrum of 3 with 10 eq. cyclohexylamine after 6 h at 90°C.

Figure S16: ¹³C NMR (125.73 MHz, CDCl₃, 298 K) spectrum of 3 with 10 eq. cyclohexylamine after 2 days at 90°C (zoomed carbonyl region).

Figure S17: ³¹P NMR (168 MHz, CDCl₃, 298 K) spectrum of 3 without additives.

Figure S18: ³¹P NMR (168 MHz, CDCl₃, 298 K) spectrum of 3 with 10 eq. cyclohexylamine after 2 days at 90°C.

Cat.(O=CNCy₂)Cl Cat.(O=CNHCy)Cl Figure S19: Equilibria in the splitting of dicyclohexylamine, including catalyst deactivation.

Mass spectrometry

With complex 1:

Complex 1 (164 mg, 0.257 mmol) + 40 eq. cyclohexylamine (1.18 mL, 10.28 mmol) heated to 130° C overnight in t-amylalcohol (5 mL). The solvent from the resulting mixture was evaporated and the remaining powder was subjected to ESI-MS.

Table S5: ESI-MS data obtained from complex 1 with 40 equiv. cyclohexylamine, heated to 130°C for 16 h.

Entry	Mass found	Corresponding complex
1	1424	2x6-2Cyclohexylamine+Na
2	1269	6+1-3CO+2Na-Cyclohexylamine-Cl
3	1185	2x1-2CO-Cl
4	1147	2x1-Cl-3CO+Na/ 6-CO+
		RuHCl+K+Cyclohexylamine+Cyclohexylimine
		(dehydrogenation)
5	1048	6-CO+RuHCl+K+Cyclohexylimine
6	993	7 -H ₂ (imine formation)
7	949	6-CO-Cylohexylamine+
		RuHCl+K+Cyclohexylimine
8	914	6-CO-Cylohexylamine+
		RuH+K+Cyclohexylimine
9	855	XX
10	818	6-CO-Cylohexylamine+ RuHCl+K+H
11	773	6+H-CO/ 5-CO+Cyclohexylamine
12	756	xx-Cyclohexylamine
13	702	5
14	639	1

		Disp	olay Report			
Analysis Info Analysis Name	D-\Data\Alans Data And	2014/280414 Dennis Pinnen	1058DP14 d	Acquisition Date	4/28/2014 1	1:52:23 AM
Method Sample Name Comment	240414ALANstune_Jow. 240414ALANstune_Jow. Dennis Pingen 1058D Dennis Pingen 1058D	m)p14)p14		Operator Bruke Instrument micrC	er UK DTOF	8213750.10408
Acquisition Paral Source Type Focus Scan Begin Scan End	meter ESI Not active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		0.4 Bar 180 °C 4.0 Vmin Waste
intens. x105		60/1/09				+MS, 3.0-3.7min #179-219
5.5- 						
5.0-	399.3551					
					4	
	325.0876					
0.5-		79.1340				
	462.1886		1147.5978 1048.4940			
0.0	400	600 800	1000 1200	1400	1600	1800 m/ż
Bruker Compass	DataAnalysis 4.1	printed: 4/28/2014	111:59:06 AM	by: Bruker UK		1 of 1
,						

			Displ	ay Report			
Analysis Info Analysis Name	D-IData\Alane Data An	T PUDAN280414	Jennis Pingen 10	JERDP14 d	Acquisition D	ate 4/28/20	114 11:52:23 AM
Method Sample Name Comment	240414ALANstune_Jor Dennis Pingen 1058 Dennis Pingen 1058	N.M DP14 DP14	2		Operator Instrument	Bruker UK micrOTOF	8213750.10408
Acquisition Param Source Type Focus Scan Begin Scan End	eter ESI Not active 50 m/z 3000 m/z	Set C	olarity apiltary rd Plate Offset	Positive 4500 V -500 V		debulizer Ny Heater Ny Gas Nvert Valve	0.4 Bar 180 °C 4.0 Vmin Waste
Intens.		1424.7041					+MS, 3.0-3.7min #179-219
	1269.9831 I		*				
1200- 1185.5815							
1000-							
	•						
800-		-					
	13335661						
-one							
400-			1485,7950	1559.7878 1619.867016	563.7672	1778.9274	
200-			LALL HALF HALF AND LA			-4	1881 8468
							Marine Manufacture and a second
0	the state of the second s	1400	1500 P	1600	1700	1800	1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 -
Bruker Compass D	ataAnalysis 4.1	printed	E 4/28/2014 1	1:59:14 AM	by: B	ruker UK	1 of 1

			[79-219				.7950	Ž.
	2014 11:52:23 AM 8213750.10408	0.4 Bar 180 °C 4.0 Vmin Waste	+MS, 3.0-3.7min #				1424.7041 1486	400 1450
	Acquisition Date 4/28/ Derator Bruker UK Instrument micrOTOF	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve					1333.5661 1338.5661	1350 14
ay reput	58DP14.d C	Positive 4500 V -500 V					1269.9831 1237.6207 1269.4831	1250 13
nispi	80414 Dennis Pingen 10	lon Polarity Set Capillary Set End Plate Offset	1147.5978					1150 1200
	D:\Data\Alans Data April2014\2 240414ALANstune_low.m Dennis Pingen 1058DP14 Dennis Pingen 1058DP14	ESI Not active 50 m/z 3000 m/z				1048,4940	1095,6026	1050 1100
	Analysis Info Analysis Name Method Sample Name	Acquisition Parameter Source Type Focus Scan Begin Scan End	Intens. x104	20-	 1.5-	 		1000

		Ō	isplay Report	3	
Analysis Info Analysis Name	D:\Data\Alans Data Aorii201	4/280414 Dennis Pinge	en 1058DP14.d	Acquisition Date	4/28/2014 11:52:23 AM
Method Sample Name Comment	240414ALANstune Jow.m Dennis Pingen 1058DP14 Dennis Pingen 1058DP14			Operator Bruker Instrument micrOT	IK 0F 8213750.10408
Acquisition Param Source Type	neter ESI	Ion Polarity	Positive	Set Nebulizer	0.4 Bar
Focus Scan Begin Scan End	Not active 50 m/z 3000 m/z	Set Capillary Set End Plate Offset	4500 V -500 V	Set Dry Heater Set Dry Gas Set Divert Valve	180 °C 4.0 l/min Waste
Intens. x104	702.2013				+MS, 3.0-3.7min #179-21
	773,313	9			
0.8-	756.3379				
- 668.4126					
-9:0					1048.4940
				93.3104	
0.4-	2100	855	4375	949.3894	
		818.4923 	914,4364		
02-			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		3191 1095.6026
0.0	. 700 · · · · 750 · · ·	800		950 1000	1100 m
Bruker Compass D	ataAnalysis 4.1	printed: 4/28/2	014 11:59:32 AM	by: Bruker UK	1 of 1

			Display Report		
Analysis Info	PulDatel And And	1 sinned MINOSCIMPOD	Diamon 10680014 d	Acquisition Date 4/28/2	014 11:52:23 AM
Anarysis Name Method Sample Name Comment	D. Udatawians Data Apr 240414ALANstune_low Dennis Pingen 1058[Dennis Pingen 1058]	12014200414 USINIS 1 .m 0P14 0P14		Operator Bruker UK Instrument micrOTOF	8213750.10408
Acquisition Param Source Type Focus Scan Begin Scan End	eter ESI Not active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate (Positive 4500 V Offset	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.4 Bar 180 °C 4.0 <i>U</i> min Waste
Intens. x105					639.1709 +MS, 3.0-3.7min #179-219
2.5-					
· · · · .					
 N		399.3551			
	325.087				
0.5-	291.2496	358,3268		579.1340 598.1764	1
0.0	275.2515	373.3264	462.1886 502.2 430.2931 45.0 502.2 4	311 548.2508 311 548.2508 311 548.2508	668.4126 702.2013
Bruker Compass Da	zou ouo itaAnalysis 4.1	500 400 printed: 4/	28/2014 11:59:39 AM	by: Bruker UK	1 of 1

With complex 3:

Complex **3** (63.8 mg, 0.1 mmol) was heated to 100°C in CHCl₃ (8 mL) in an autoclave in the presence of 10 equiv cyclohexylamine (115 μ L, 0.57 mmol). After evaporation of the solvent, the resulting mixture was subjected to ESI-MS.

Table S6: ESI-MS analysis from the mixture of complex 3 with 10 equiv. cyclohexylamine heated to 90°C for 4 days.

Entry	Mass found	Corresponding complex
1	356	Ru(2x carbamoyl)+2H
2	547	Ru(CpPh ₅)
3	575	3 -Cl-[PPh ₃]
4	765	9 – COCyclohexylamine $-2H_2$
		(imines)
5	793	8 - HCl + Na - 2H
6	809	8 + H/ 3-Cl-CO
7	874	3 + 2H / 9 + 3H
8	1094	$\mathbf{Ru}_2(\mathbf{CpPh}_5)_2$
9	1120	
10	1229	
11	1257	3 + 9 -[PPh ₃]-2xCyclohexylamine-
		СО
12	1285	3 + 9 -[PPh ₃]-2xCyclohexylamine
13	1305	
14	1313	2x3+Cyclohexylamine+Na+K-
		2C1
15	1338	2x8 – 2xCOCyclohexylamine -
		2Cl + 2Na
16	1366	2x 8 – COCyclohexylamine,
		Cyclohexylamine –2Cl + 2Na
17	1394	2x8 - 2Cyclohexylamine - 2Cl +
		2Na
18	1493	2x8 – Cyclohexylamine – $2Cl$ +
		2Na

GC-Analysis

Yields of the catalytic runs have been determined by the area of the GC signal. The retention times of the reaction outcome were compared with the retention times of the neat components. Response factors for cyclohexylamine, dicyclohexylamine and dicyclohexylimine were determined and used in the calculation.

ponents
Split / 100
270°C
Не
Pressure
121.0 kPa
144.0 mL/min
0.70 mL/min
25.8 cm/sec
Ultra-2 serial Nr.: US8649351H
25 m, 0.33 µm film thickness, 0.20 mm inner diameter
310°C
121.0 -> 164.0 @ 1.8 kPa/min 164.0 hold 15 min
80°C -> 270°C @ 8°C/min 270 hold 15 min

References

- [1] B. Martín-Matute, M. Edin, K. Bogár, B. Kaynak, J.-E. Bäckvall, J. Am. Chem. Soc. 2005, 127, 8817-8825.
- [2] S.-B. Ko, B. Baburaj, M.-J. Kim, J. Park, J. Org. Chem. 2007, 72, 6860-6864.