Electronic Supplementary Information

Computational, Electrochemical, and Spectroscopic Studies of two Mononuclear Cobaloximes: The influence of an axial pyridine and solvent on the redox behaviour and evidence for pyridine coordination to cobalt(I) and cobalt(II) metal centres.

Mark A. W. Lawrence,^a Michael J. Celestine,^a Edward T. Artis,^a Lorne S. Joseph,^b Deisy L. Esquivel,^c Abram J. Ledbetter,^d Donald M. Cropek,^e William L. Jarrett,^f Craig A. Bayse,^a Matthew I. Brewer,^a and Alvin A. Holder*^a

Table of Contents

Electro	Electronic Supplementary Information					
1 Re	esults	2				
1.1	Characterization	2				
1.2	Mole ratio plots and equilibria data	5				
1.3	Electrochemical data	16				
1.4	Spectroelectrochemical data					
1.5	¹¹ B, ¹⁹ F, and ⁵⁹ Co NMR spectroscopic data					
1.6	Electrocatalytic behaviour	34				

1 Results

1.1 Characterization

Figure S1. High resolution ESI mass spectrum of $[Co(dmgBF_2)_2(H_2O)(py)]^+$ in the positive mode with CH₃CN as solvent.

Figure S2. Full FT IR spectra and assignment of selected stretching frequencies of (a) complex 1 and (b) complex 2.

Figure S3. A plot of the molar extinction coefficient versus wavelength of complex 1. Solvent = acetonitrile (a), acetone (b), 2-butanone (c), 1,2-difluorobenzene/acetone (4:1, v/v) (d), and water (e). NIR spectrum is shown as an inset.

Figure S4. A plot of the molar extinction coefficient versus wavelength of complex 2. Solvent = acetonitrile (a), acetone (b), 2-butanone (c), 1,2-difluorobenzene/acetone (4:1, v/v) (d), and water (e). NIR spectrum is shown as an inset.

1.2 Mole ratio plots and equilibria studies

Figure S5. The effect of pyridine addition to complex 1 in the UV-visible spectrum (NIR spectrum is shown as an inset) in acetone. [complex 1] = 0.1 mM (2.0 mM for NIR spectral studies) and 0.0 mM \ge [pyridine] \ge 0.5 mM (0.0 mM \ge [pyridine] \ge 4.0 mM for NIR spectral studies), and path length = 1.0 cm.

Figure S6. The effect of pyridine addition to complex 1 in the UV-visible spectrum (NIR spectrum is shown as an inset) in 2-butanone. [complex 1] = 0.1 mM (2.0 mM for NIR spectral studies) and 0.0 mM \geq [pyridine] \geq 0.5 mM (0.0 mM \geq [pyridine] \geq 4.0 mM for NIR spectral studies), and path length = 1.0 cm.

Figure S7. A plot of absorbance versus wavelength for a titration of complex 1 with pyridine in dichloromethane at 20 °C. [Complex 1] = 0.10 mM and path length = 1.0 cm.

Table S1. NIR spectral data for absorbance at 1162 nm, log $[(A_0-A)/(A-A_\infty)]$, and log [pyridine] for complex 1 in acetonitrile at 20 °C. [complex 1] = 2.0 mM and path length = 1.0 cm.

[py]/[complex 1]	Abs _{1162 nm}	log [pyridine]	$\log \left[(A_0-A)/(A-A_\infty) \right]$
0	0.2474		
0.25	0.2892	-3.572	-0.8823
0.33	0.3059	-3.474	-0.7130
0.40	0.3222	-3.414	-0.5821
0.50	0.3344	-3.286	-0.4977
0.65	0.36315	-3.182	-0.3254
0.75	0.3720	-3.092	-0.2774
0.87	0.3895	-3.021	-0.1870
1.0	0.4062	-2.951	-0.1040
1.12	0.4255	-2.902	-0.0107
1.50	0.4645	-2.746	0.1800
1.75	0.4845	-2.661	0.2831
2.0	0.4949	-2.580	0.3401
2.25	0.5103	-2.517	0.4301
2.75	0.5131	-2.395	0.4473
3.0	0.5258	-2.351	0.5295
4.0	0.5495	-2.199	0.7126
5.0	0.5562	-2.082	0.7756

Figure S8. Mole ratio plot for the interaction of pyridine with complex 1 in acetonitrile. [complex 1] = 2.0 mM, $\lambda = 1162$ nm, temperature = 20 °C, and path length = 1.0 cm.

Figure S9. A plot of log $[(A_o-A)/(A-A_\infty)]$ versus log [pyridine] for complex 1 at 1162 nm in acetonitrile at 20 °C.

[py]/[complex 1]	Abs _{372 nm}	$\log\left[(A_0-A)/(A-A_\infty)\right]$	log [pyridine]
0	0.0922		
0.50	0.1265	-0.2309	-4.886
0.87	0.1444	0.1099	-4.513
1.0	0.1497	0.2128	-4.420
1.25	0.1590	0.4103	-4.276
1.50	0.1618	0.4763	-4.125
1.75	0.1696	0.7018	-4.038
2.0	0.1724	0.8020	-3.945
4.0	0.1796	1.206	-3.514

Table S2. UV-visible spectral data for absorbance at 372 nm, log $[(A_o-A)/(A-A_\infty)]$, and log [pyridine] for complex 1 in acetone at 20 °C. [complex 1] = 0.10 mM and path length = 1.0 cm.

Figure S10. Mole ratio plot for the interaction of pyridine with complex 1 in acetone. [complex 1] = 0.10 mM, $\lambda = 372$ nm, temperature = 20 °C, and path length = 1.0 cm.

Figure S11. A plot of log $[(A_o-A)/(A-A_\infty)]$ versus log [pyridine] for complex 1 at 371 nm in acetone at 20 °C.

Table S3. UV-visible spectral data for absorbance at 372 nm, log $[(A_o-A)/(A-A_\infty)]$, and log [pyridine] for complex 1 in 2-butanone at 20 °C. [complex 1] = 0.10 mM, and path length = 1.0 cm.

[py]/[complex 1]	$Abs_{372 \ nm}$	$\log \left[(A_0-A)/(A-A_\infty) \right]$	log [pyridine]
0	0.1045		
0.50	0.1498	-4.857	-0.2480
1.0	0.1847	-4.442	0.2479
1.25	0.1973	-4.292	0.4529
1.50	0.2035	-4.148	0.5716
1.75	0.2105	-4.043	0.7357
2.0	0.2150	-3.951	0.8664
4.0	0.2244	-3.516	1.330

Figure S12. Mole ratio plot for the interaction of pyridine with complex 1 in 2-butanone. [complex 1] = 0.10 mM, $\lambda = 372 \text{ nm}$, temperature = 20 °C, path length = 1.0 cm.

Figure S13. A plot of log $[(A_0-A)/(A-A_\infty)]$ versus log [pyridine] for complex 1 at 372 nm in 2-butanone at 20 °C.

Table S4. UV-visible spectral data for absorbance at 372 nm, log $[(A_o-A)/(A-A_\infty)]$, and log [pyridine] for complex 1 in 1,2-difluorobenzene/acetone (4:1, v/v) at 20 °C. [complex 1] = 0.10 mM, and path length = 1.0 cm.

[py]/[complex 1]	Abs _{372 nm}	log [pyridine]	$\log \left[(A_0-A)/(A-A_\infty) \right]$
0	0.1058		
0.33	0.1336	-5.349	-0.3990
0.40	0.1390	-5.231	-0.2858
0.50	0.1444	-4.988	-0.1810
0.65	0.1556	-4.860	0.02092
0.75	0.1593	-4.700	0.08827
1.25	0.1817	-4.329	0.5519
1.50	0.1864	-4.173	0.6848
1.75	0.1874	-4.041	0.7184
2.5	0.1930	-3.795	0.9394
5.0	0.2011	-3.396	1.7048

Figure S14. Mole ratio plot for the interaction of pyridine with complex 1 in 1,2-difluorobenzene/acetone (4:1, v/v). [complex 1] = 0.10 mM, $\lambda = 372$ nm, temperature = 20 °C, path length = 1.0 cm.

Figure S15. A plot of log $[(A_o-A)/(A-A_\infty)]$ versus log [pyridine] for complex 1 at 372 nm in 1,2-difluorobenzene/acetone (4:1, v/v) at 20 °C.

[py]/[complex 1]	Abs _{370 nm}	log [pyridine]	$\log \left[(A_0-A)/(A-A_\infty) \right]$
0	0.1016		
0.33	0.1341	-6.166	-0.3210
0.40	0.1409	-6.068	-0.1916
0.50	0.1506	-5.909	-0.02143
0.75	0.1738	-5.507	0.4077
0.87	0.1843	-5.330	0.6680
1.0	0.1914	-4.977	0.9282
1.12	0.1949	-4.720	1.121
1.25	0.1964	-4.514	1.226
1.5	0.1977	-4.265	1.350
2.0	0.2003	-3.993	1.755
2.25	0.1997	-3.895	1.635
2.5	0.1991	-3.816	1.531
3.0	0.2011	-3.697	2.025

Table S5. UV-visible spectral data for absorbance at 370 nm, log $[(A_0-A)/(A-A_\infty)]$ and log [pyridine] for complex 1 in dichloromethane at 20 °C. [complex 1] = 0.10 mM, and path length = 1.0 cm.

Figure S16. Mole ratio plot for the interaction of pyridine with complex 1 in dichloromethane. [complex 1] = 0.10 mM, λ = 370 nm, temperature = 20 °C, and path length = 1.0 cm.

Figure S17. A plot of log $[(A_0-A)/(A-A_\infty)]$ versus log [pyridine] for complex 1 at 370 nm in dichloromethane at 20 °C.

Table S6. UV-visible spectral data for absorbance at 447 nm, log $[(A_o-A)/(A-A_\infty)]$, log [pyridine] for the [ⁿBu₄N]BH₄ reduced form of complex **1** in acetonitrile. [complex **1**] = 1.0 mM, temperature = 20 °C, and path length = 1.0 mm.

[py]/[complex 1]	Abs _{447 nm}	$\log\left[(A_{o}-A)/(A-A_{\infty})\right]$	log [py]
0	0.1781		
0.5	0.2404	-0.3440	-3.725
1.0	0.2954	0.1524	-3.384
1.5	0.3199	0.3871	-3.102
2.0	0.3433	0.6780	-2.931
2.5	0.3538	0.8610	-2.790
4.0	0.3689	1.322	-2.516

Figure S18. Mole ratio plot for the interaction of pyridine with the $[{}^{n}Bu_{4}N]BH_{4}$ reduced form of complex 1 in acetonitrile. [complex 1] = 1.0 mM, temperature = 20 °C, and path length = 1.0 mm.

Figure S19. A plot of log $[(A_0-A)/(A-A_\infty)]$ versus log [py] for the $[{}^nBu_4N]BH_4$ reduced form of complex 1 in acetonitrile at 20 °C.

1.3 Electrochemical data

Figure S20. Cyclic voltammograms of complex 1 in water on a glassy carbon working electrode versus AgCl/Ag. [complex 1] = 0.64 mM, pH = 2.30 (solid lines) and pH = 6.75 (broken lines), supporting electrolyte = $0.10 \text{ M} \text{ NaClO}_4$, and scan rate = $100 \text{ mV} \text{ s}^{-1}$.

Figure S21. Cyclic voltammograms of complexes **1** and **2** in water on a glassy carbon working electrode versus AgCl/Ag. [complex **1**] = 0.64 mM (solid lines) and [complex **2**] = 0.63 mM (broken lines), pH = 2.30, supporting electrolyte = 0.10 M NaClO₄, and scan rate = $100 \text{ mV} \text{ s}^{-1}$.

Figure S22. Cyclic voltammograms of complexes 1 and 2 in 2-butanone on a glassy carbon working electrode versus a Ag quasi-reference electrode. [complex 1] = 1.02 mM (solid lines) and [complex 2] = 1.08 mM (broken lines), supporting electrolyte = $0.10 \text{ M} [^n\text{Bu}_4\text{N}]\text{ClO}_4$, and scan rate = 100 mV s^{-1} .

Figure S23. Cyclic voltammograms of complexes **1** and **2** in 1,2-difluorobenzene/acetone (4:1 v/v) on a glassy carbon working electrode versus a Ag quasi-reference electrode. [complex **1**] = 1.05 mM (solid lines) and [complex **2**] = 1.03 mM (broken lines), supporting electrolyte = $0.10 \text{ M} [^{n}\text{Bu}_4\text{N}]\text{ClO}_4$, and scan rate = 100 mV s^{-1} .

Figure S24. Cyclic voltammograms of complex **1** in CH₃CN on a glassy carbon working electrode versus a Ag quasi-reference electrode. [complex **1**] = 1.04 mM (solid lines) and [complex **1**] = 1.04 mM with 5.09 mM pyridine (broken lines), supporting electrolyte = $0.10 \text{ M} [^{n}\text{Bu}_{4}\text{N}]\text{ClO}_{4}$, and scan rate = $100 \text{ mV} \text{ s}^{-1}$.

Figure S25. Cyclic voltammograms of complexes 1 and 2 in water with pyridine on a glassy carbon working electrode versus AgCl/Ag. [complex 1] = 0.64 mM with 5.21 mM pyridine (solid lines) and [complex 2] = 0.63 mM with 5.21 mM pyridine (broken lines), supporting electrolyte = 0.10 M NaClO_4 , and scan rate = 100 mV s^{-1} .

Figure S26. Cyclic voltammograms complex 1 in CH_3CN on a glassy carbon working electrode versus a Ag quasi-reference electrode. [complex 1] = 1.02 mM (solid lines) and [complex 1] = 1.02 mM with 15.0 mM 2-methylpyridine (broken lines), supporting electrolyte = 0.10 M [nBu_4N]ClO₄, and scan rate = 100 mV s⁻¹.

Figure S27. Cyclic voltammograms of complex **1** in CH₃CN on a glassy carbon working electrode versus a Ag quasi-reference electrode. [complex **1**] = 1.02 mM (solid lines) and [complex **1**] = 1.02 mM with 15.1 mM 2,6-dimethylpyridine (broken lines), supporting electrolyte = 0.10 M ["Bu₄N]ClO₄, and scan rate = $100 \text{ mV} \text{ s}^{-1}$.

Figure S28. Cyclic voltammograms of complex 1 in acetonitrile on a glassy carbon working electrode versus a Ag quasi-reference electrode. [complex 1] = 1.05 mM (solid lines) and [complex 1] = 1.05 mM with [2-aminopyridine] = 5.10 mM (broken lines), supporting electrolyte = 0.10 M ["Bu₄N]ClO₄, and scan rate = $100 \text{ mV} \text{ s}^{-1}$.

Figure S29. Cyclic voltammograms of complex **1** in acetone on a glassy carbon working electrode versus a Ag quasi-reference electrode. [complex **1**] = 1.04 mM (solid lines) and [complex **1**] = 1.04 mM with 5.09 mM of pyridine (broken lines), supporting electrolyte = $0.10 \text{ M} [^{n}\text{Bu}_4\text{N}]\text{ClO}_4$, and scan rate = 100 mV s⁻¹.

Figure S30. Cyclic voltammograms complex 1 in 2-butanone on a glassy carbon working electrode versus a Ag quasi-reference electrode. [complex 1] = 1.02 mM (solid lines) and [complex 1] = 1.02 mM with 5.09 mM of pyridine (broken lines), supporting electrolyte = 0.10 M [$^{n}\text{Bu}_4\text{N}$]ClO₄, and scan rate = 100 mV s^{-1} .

1.4 Spectroelectrochemistry

Figure S31. Absorbance changes in the UV-visible spectra of complex 1 with pyridine in acetonitrile at a constant potential of -1.0 V versus a Ag quasi-reference electrode. [complex 1] = 1.05 mM, [pyridine] = 5.09 mM, supporting electrolyte = 0.10 M [n Bu₄N]ClO₄, and path length = 1 mm.

Figure S32. Absorbance changes in the UV-visible spectra of complex 1 with pyridine in acetonitrile at a constant potential of -1.0 V versus a Ag quasi-reference electrode. [complex 1] = 1.05 mM, [pyridine] = 10.18 mM, supporting electrolyte = 0.10 M ["Bu₄N]ClO₄, and path length = 1 mm.

Figure S33. Absorbance changes in the UV-visible spectra of complex **2** with pyridine in acetonitrile at a constant potential of -1.0 V versus a Ag quasi-reference electrode. [complex **2**] = 1.02 mM, [pyridine] = 10.18 mM, supporting electrolyte = 0.10 M [^{*n*}Bu₄N]ClO₄, and path length = 1 mm.

Figure S34. Absorbance changes in the UV-visible spectra of complex 1 with 2-aminopyridine in acetonitrile at a constant potential of -1.0 V versus a Ag quasi-reference electrode. [complex 1] = 1.05 mM, [2-aminopyridine] = 5.10 mM, supporting electrolyte = 0.10 M [^{*n*}Bu₄N]ClO₄, and path length = 1 mm.

Figure S35. Absorbance changes in the UV-visible spectra of complex 1 in water at a constant potential of -0.75 V versus AgCl/Ag. [complex 1] = 0.51 mM, supporting electrolyte = 0.10 M NaClO₄, pH = 5.79, and path length = 1 mm. *Note: At low pH (e.g., 2.30) the evolution of hydrogen is observed. The use of a buffer was avoided to eliminate substitution of the axial water ligands in complex 1 via anation.*

Figure S36. Absorbance changes in the UV-visible spectra of complex 1 in water at a constant potential of -0.70 V versus a Ag quasi-reference electrode. [complex 1] = 0.60 mM, [pyridine] = 5.21 mM, supporting electrolyte = 0.10 M NaClO₄, pH = 4.58, and path length = 1 mm.

Figure S37. Absorbance changes in the UV-visible spectra of complexes 1 and 2 in acetone at a constant potential of -0.90 V versus a Ag quasi-reference electrode; supporting electrolyte = 0.10 M [$^{n}Bu_{4}N$]ClO₄, and path length = 1 mm. (a) [complex 1] = 1.14 mM, (b) [complex 2] = 1.08 mM.

Figure S38. Absorbance changes in the UV-visible spectra of complex 1 in acetone at a constant potential of -1.30 V versus a Ag quasi-reference electrode. [complex 1] = 1.14 mM, supporting electrolyte = 0.10 M [$^{n}Bu_{4}N$]ClO₄, and path length = 1 mm. Broken line illustrates the spectrum after an extended time.

Figure S39. Absorbance changes in the UV-visible spectra of complex 1 with pyridine in acetone at a constant potential of -0.90 V versus a Ag quasi-reference electrode. [complex 1] = 1.14 mM, [pyridine] = 5.09 mM, supporting electrolyte = 0.10 M [^{*n*}Bu₄N]ClO₄, and path length = 1 mm.

Figure S40. Absorbance changes in the UV-visible spectra of complex **2** with pyridine in acetone at a constant potential of -0.90 V versus a Ag quasi-reference electrode. [complex **2**] =1.08 mM, [pyridine] = 5.09 mM, supporting electrolyte = 0.10 M [n Bu₄N]ClO₄, and path length = 1 mm.

Figure S41. Absorbance changes in the UV-visible spectra of complex 1 in 2-butanone at a constant potential of -0.70 V versus a Ag quasi-reference electrode. [complex 1] = 1.04 mM, supporting electrolyte = 0.10 M [$^{n}Bu_{4}N$]ClO₄, and path length = 1 mm.

Figure S42. Absorbance changes in the UV-visible spectra of complex 1 in 2-butanone at a constant potential of -1.10 V versus a Ag quasi-reference electrode. [complex 1] = 1.04 mM, supporting electrolyte = 0.10 M [$^{n}Bu_{4}N$]ClO₄, and path length = 1 mm. Broken line illustrates the spectrum after an extended time.

Figure S43. Absorbance changes in the UV-visible spectra of complex 1 with pyridine in 2-butanone at a constant potential of -0.70 V versus a Ag quasi-reference electrode. [complex 1] =1.04 mM, [pyridine] = 5.09 mM, supporting electrolyte = 0.10 M [n Bu₄N]ClO₄, and path length = 1 mm.

Figure S44. Absorbance changes in the UV-visible spectra of complex 1 in 1,2-difluorobenzene/acetone (4:1, v/v) at a constant potential of -0.90 V versus a Ag quasi-reference electrode. [complex 1] = 1.05 mM, supporting electrolyte = 0.10 M [n Bu₄N]ClO₄, and path length = 1 mm.

Figure S45. Absorbance changes in the UV-visible spectra of complex 2 in 1,2-difluorobenzene/acetone (4:1, v/v) at a constant potential of -0.90 V versus **a Ag quasi-reference electrode**. [complex 2] = 1.03 mM, supporting electrolyte = 0.10 M [n Bu₄N]ClO₄, and path length = 1 mm.

1.5 ¹¹B, ¹⁹F, and ⁵⁹Co NMR spectroscopic studies

Figure S46. Conformers most likely adopted by the BF_2 caps of complex 2.

Figure S47. ⁵⁹Co NMR spectrum of the Co(I) species produced from 50 mM of complex 1, 500 mM of $[^{n}Bu_{4}N]BH_{4}$, and 250 mM of 2,3,5,6-tetrafluoropyridine (pyF₄) in CD₃CN.

Figure S48. ¹⁹F NMR spectra in CD₃CN of (a) 50 mM complex 1, (b) 50 mM complex 2, (c) 50 mM complex 1 with 250 mM pyridine.

Figure S49. ¹⁹F NMR spectra acquired in CD₃CN of (a) 50 mM complex **1** with 500 mM [Bu₄N]BH₄; (b) 50 mM complex **2** with 500 mM [^{*n*}Bu₄N]BH₄, and (c) 50 mM complex **1** with 250 mM pyridine and 500 mM [Bu₄N]BH₄.

Figure S50. ¹⁹F NMR spectra in CD₃CN of (a) 250 mM pentafluoropyridine (pyF_5) and (b) 250 mM pyF_5 with 500 mM [nBuN]BH₄.

Figure S51. ¹⁹F NMR spectra in CD₃CN for (a) 250 mM pyF₅, (b) 50 mM complex 1 and 250 mM pyF₅ and (c) 50 mM complex 1, 250 mM pyF₅ and 500 mM [$^{n}Bu_{4}N$]BH₄.

Table	S7.	¹⁹ F	and	^{11}B	NMR	chemical	shifts	for	mixtures	of	$[Co(dmgBF_2)_2(H_2O)_2]$	(complex	1),
fluorin	ated	pyrie	dines,	and	tetrabu	ıtylammon	ium tet	traflu	ioroborate	in (CD ₃ CN.		

Entry	Species/mixture	$\delta_{\rm B}$ / ppm	$\delta_{\rm F}$ / ppm
1	Complex $1 + [^{n}Bu_{4}N]BH_{4} + pyF_{5}$	19.63, 6.11 (t), 3.42, 3.26, 2.06, 1.51, 1.40, 0.95-0.45 (m)	-45.7, -48.4, -49.1, -69.3, -75.1, - 89.6, -91.8, -93.2, -95.3, -96.3, -97.5, -98.8, -99.5 -99.9, -100.3, -101.3, - 102.0, -103.8, -104.7, -105.4, -105.5, -108.7, -115.8, -118.9, -119.1, - 119.9, -122.3, -128.2, -128.5, -130.6, -132.1, -136.0, -137.1, -138.7, -140.9, -141.1, -142.7, -147.4, -147.5, -147.5, -147.65, -147.7, -147.8, -150.6, - 164.8, -173.5,
2	Complex $1 + [^{n}Bu_{4}N]BH_{4} + pyF_{4}$	19.92, 6.09, 3.44, 1.40, 0.79, -1.15, - 10.60, -18.99, -19.69	-48.8, -75.1, -89.6, -91.8, -93.2, - 95.4, -95.8, -128.2, -128.5, -131.8, - 135.0, -135.9, -136.1, -137.2, -138.2, -140.9, -141.1, -142.8, -147.4, - 147.5, -147.5, -150.1, -150.6, -150.6, -152.0, -152.2

1.6 Electrocatalytic behavior

Co(II) + e ⁻	->	Co(I)	(i)
Co(I) + HA	\rightarrow	Co(III)-H + A ⁻	(ii)
Co(III)-H + HA	->	$Co(III) + H_2 + A^-$	(iii)
Co(III) + Co(I)	\rightarrow	2 Co(II)	(iv)
2 Co(III)-H	\rightarrow	2 Co(II) + H ₂	(v)

Scheme S1. Proposed mechanism for the electrocatalytic reduction of protons (from an acid source, HA) by cobaloximes.¹

Figure S52. Cyclic voltammograms involving electrocatalysis with complex **2** in CH₃CN. [complex **2**] = 1.08 mM in the absence (black) and presence of aliquots of *p*-cyanoanilinium tetrafluoroborate (3.21, 5.54, 9.52, 13.8, 19.6, 25.3, 34.5, and 44.7 mM), supporting electrolyte = $0.10 \text{ M} [^{n}\text{Bu}_4\text{N}]\text{CIO}_4$, and scan rate = 100 mV s^{-1} at a glassy carbon working electrode versus a Ag quasi-reference electrode.

Figure S53. Cyclic voltammograms involving electrocatalysis with complex 1 in acetone. [complex 1] = 1.08 mM in the absence (black) and presence of aliquots of *p*-cyanoanilinium tetrafluoroborate (1.80, 3.16, 4.52, 6.17, 8.74, 11.2, 14.9, and 18.6 mM), supporting electrolyte = $0.10 \text{ M} [^n\text{Bu}_4\text{N}]\text{CIO}_4$, and scan rate = 100 mV s^{-1} at a glassy carbon working electrode versus a Ag quasi-reference electrode.

Figure S54. Cyclic voltammograms involving electrocatalysis with complex **2** in acetone. [complex **2**] = 1.08 mM in the absence (black) and presence of aliquots of of *p*-cyanoanilinium tetrafluoroborate (1.70, 3.54, 5.24, 7.28, 9.42, 12.4, 16.1, and 18.7 mM), supporting electrolyte = $0.10 \text{ M} [^{n}\text{Bu}_4\text{N}]\text{ClO}_4$, and scan rate = $100 \text{ mV} \text{ s}^{-1}$ at a glassy carbon working electrode versus a Ag quasi-reference electrode.

Figure S55. Dependence of the catalytic peak current $(i_{pc,1})$ on the concentration of *p*-cyanoanilium tetrafluoroborate at a scan rate of 100 mV s⁻¹ for complex **1** (\blacklozenge : in CH₃CN, \triangle : in acetone) and complex **2** (\Box : in CH₃CN, \times : acetone) in 0.10 M [^{*n*}Bu₄N]ClO₄, at a glassy carbon working electrode versus a Ag quasi-reference electrode.

Figure S56. The effect of dielectric constant on k_{app} (from Table 6 of main text) for complex 1.

Figure S57. The effect of dielectric constant on k_{app} (from Table 6 of main text) for complex 2.

Figure S58. Setup of the H-Cell used for the electrocatalytic generation of hydrogen.

Reference

1. X. Hu, B. S. Brunschwig and J. C. Peters, J. Am. Chem. Soc., 2007, 129, 8988-8998.