**Electronic Supplementary Information (ESI)** 

## Selective Cu₄Pd alloy nanoparticles anchoring on amine functionalized graphite nanosheet and its use as reusable catalyst for C–C coupling reaction with sacrificial role of Cu for Pd–regeneration

Amrita Chakravarty<sup>a</sup> and Goutam De<sup>a\*</sup>

<sup>a</sup> Nano-Structured Materials Division, CSIR–Central Glass & Ceramic Research Institute,

196, Raja S. C. Mullick Road, Kolkata-700032, India

 Table S1 Composition of Cu–Pd alloy determined from different analytical techniques.

| Analysis technique | Composition                           |
|--------------------|---------------------------------------|
| ІСР                | Cu <sub>0.82</sub> Pd <sub>0.18</sub> |
| XRD                | Cu <sub>0.82</sub> Pd <sub>0.18</sub> |
| XPS                | Cu <sub>0.81</sub> Pd <sub>0.19</sub> |
| EDS                | Cu <sub>0.80</sub> Pd <sub>0.20</sub> |

**Table S2** Percentage yields in five consecutive cycles of C–C coupling reaction with PhI and PBA using different catalysts.

| Catalyst name            | Isolated Yield % |              |             |              |             |  |  |
|--------------------------|------------------|--------------|-------------|--------------|-------------|--|--|
|                          | First cycle      | Second cycle | Third cycle | Fourth cycle | Fifth cycle |  |  |
| Cu <sub>4</sub> Pd@AFGNS | 79               | 80.5         | 72          | 70           | 70          |  |  |
| Pd@AFGNS                 | 83.5             | 49.5         | _           | _            | _           |  |  |



**Fig. S1** Solvothermal reaction carried out with different molar ratio of  $PdCl_2$ :  $CuCl_2 \cdot H_2O$  for optimization of the reaction parameter



Fig. S2 XRD pattern of AFGNS.



Fig. S3 XPS survey scan of Cu<sub>4</sub>Pd@AFGNS.



**Fig. S4** (a) XRD pattern of Cu/Pd@graphite with a portion of the spectrum magnified in the inset and (b) schematic representation of synthesis of Cu/Pd@graphite.



**Fig. S5** Successive fluorescence spectra of the C–C coupling reaction at 50 °C in the presence of the Cu<sub>4</sub>Pd@AFGNS catalyst between phenylboronic acid and (a) bromobenzene (PhBr), (b) chlorobenzene (PhCl).



**Fig. S6** Fluorescence spectra of the C–C coupling reaction carried out (a) in absence of catalyst and (b) with AFGNS in absence of any alloy or metal NPs.



**Fig. S7** TEM image of Cu<sub>4</sub>Pd@AFGNS catalyst after five cycles of C–C coupling reaction with PhI and PBA.