Electronic Supplementary Information (ESI) for

Enhancement of the coercivity in Co-Ni layered double hydroxides by increasing basal spacing

Cuijuan Zhang, Tomoya Tsuboi, Hiroaki Namba, Yasuaki Einaga* and Takashi Yamamoto*

Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan

Contents.

Synthesis of Co-Ni(OH)₂, and Co-Ni-Br, -NO₃, and -CnSO₃ (n = 4, 6, 8, 10, and 12) LDH.

Figure S1. XRD patterns of Co-Ni-Br and -NO₃ LDH.

Figure S2. TG curves of Co-Ni-Br, -NO₃, and -C*n*SO₃ (*n* = 2, 4, 6, 8, 10, and 12) LDH.

Figure S3. $\chi_{\rm M}T$ vs *T* and $\chi_{\rm M}^{-1}$ vs *T* plots of Co-Ni- Br and -NO₃ LDH.

Figure S4. $\chi_M T$ vs *T* plots of Co-Ni-C*n*SO₃ (*n* = 4, 6, 8, 10, and 12) LDH.

Figure S5. χ_{M}^{-1} vs *T* plots of Co-Ni-C*n*SO₃ (*n* = 4, 6, 8, 10, and 12) LDH.

Figure S6. ZFC-FC magnetizations of Co-Ni-Br, $-NO_3$, and $-CnSO_3$ LDH (n = 4, 6, 8, 10, and 12).

Figure S7. Field-dependent magnetizations of Co-Ni-Br, $-NO_3$, and $-CnSO_3$ LDH (n = 4, 6, 8, 10, and 12).

Figure S8. Hysteresis loops of Co-Ni-Br, $-NO_3$, and $-CnSO_3$ LDH (n = 4, 6, 8, 10, and 12).

Scheme 1. Synthesis of Co-Ni-CnSO₃ LDH^a

^aIllustrations drawn by using the software VESTA 3: K. Momma and F. Izumi, VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. *J. Appl. Crystallogr.*, 2011, **44**, 1272–1276.

Synthesis of the precursor, Co-Ni(OH)₂, was carried out as follows. Cobalt chloride hexahydrate (CoCl₂· $6H_2O$, 1.19 g, 5.00 mmol), nickel chloride hexahydrate (NiCl₂· $6H_2O$, 0.594 g, 2.50 mmol), and hexamethylenetetramine (6.31 g, 45.0 mmol) were dissolved into water (1000 mL), and refluxed for 5 h under an argon atmosphere. The precipitate was filtered, washed with water and ethanol, and then air-dried.

Synthesis of Co-Ni-Br LDH was carried out with an oxidative intercalation approach. Bromine (1.12 g, 12.1 mmol) was dissolved into acetonitrile (600 mL). Co-Ni(OH)₂ (1.07 g) was dispersed into the solution after purging with argon gas, followed by stirring for 24 h at room temperature under an argon atmosphere. The precipitate was collected by centrifugation, washed with ethanol, and air-dried. Synthesis of Co-Ni-NO₃ LDH was carried out with an ethanol-assisted anion-exchange approach. Sodium nitrate (25.5 g, 3.00 mmol) was dissolved into ethanol/water solution (200 mL, 1:1 v/v). Co-Ni-Br LDH (0.250 g) was dispersed into the solution after purging with argon gas, followed by stirring for 24 h at room temperature under an argon atmosphere. The precipitate was filtered, washed with water and ethanol, and then air-dried.

Synthesis of Co-Ni-CnSO₃ LDH was carried out with an ethanol-assisted anion-exchange approach. Added amount of *n*-alkylsulfonates, Co-Ni-Br LDH, and volume of ethanol/water solution were listed as Table S1. The dispersion was purged with argon gas, followed by stirring for 24 h at room temperature (n = 4) or refluxing 24 h (n = 6, 8, 10, and 12) under an argon atmosphere. The product was filtered, washed with ethanol, and air-dried.

 Table S1. Added amount of Co-Ni-Br LDH, *n*-alkylsulfonates, and volume of ethanol/water solution.

Sample	Co-Ni-Br LDH (g)	<i>n</i> -Alkylsulfonate (g; mmol)	Ethanol/Water (mL)
Co-Ni-C4SO ₃ LDH	0.134	26.2; 164	120
Co-Ni-C6SO ₃ LDH	0.188	40.1; 220	160
Co-Ni-C8SO3 LDH	0.182	47.5; 220	160
Co-Ni-C10SO ₃ LDH	0.185	49.1; 201	160
Co-Ni-C12SO ₃ LDH	0.155	50.6; 186	240

Fig S1. XRD patterns: Co-Ni-Br (a), and -NO₃ (b) LDH.

Fig S2. TG curves: Co-Ni-Br (a), -NO₃ (b), -C2SO₃ (c), -C4SO₃ (d), -C6SO₃ (e), -C8SO₃ (f), -C10SO₃ (g), -C12SO₃ (h) LDH.

Fig S3. Plots of $\chi_M T$ against *T* between 2 and 300 K for Co-Ni-Br (a) and -NO₃ (b) LDH. Inset shows the plots of $\chi_M T$ against *T* in the low-temperature region (2–30 K). Plots of χ_M^{-1} against *T* between 2 and 300 K for Co-Ni-Br (c) and -NO₃ (d) LDH. The red solid line is fit to the Curie–Weiss law in the high temperature region (150–300 K). Field-dependent magnetization at 2 K: (e) up to 5 T and (f) the low-field region up to 0.1 T. The solid lines are guided to eyes.

Fig S4. Plots of $\chi_M T$ against *T* between 2 and 300 K under 5000 Oe: Co-Ni-C4SO₃ (a), -C6SO₃ (b), -C8SO₃ (c), -C10SO₃ (d), -C12SO₃ (e) LDH. Inset shows the plots of $\chi_M T$ against *T* in the low-temperature region (2–30 K).

Fig S5. Plots of χ_{M}^{-1} against *T* between 2 and 300 K under 5000 Oe: Co-Ni-C4SO₃ (a), -C6SO₃ (b), -C8SO₃ (c), -C10SO₃ (d), -C12SO₃ (e) LDH. The red solid line is fit to the Curie–Weiss law in the high temperature region (150–300 K).

Fig S6. ZFC-FC magnetizations under 100 Oe: Co-Ni-Br (a), -NO₃ (b), -C4SO₃ (c), -C6SO₃ (d), -C8SO₃ (e), -C10SO₃ (f), -C12SO₃ (g) LDH.

Fig S7. Field-dependent magnetizations at 2 K: (a) up to 5 T for Co-Ni-CnSO₃ (n = 4, 6, 8, 10, and 12), and the low-field region up to 0.1 T for (b) Co-Ni-C4SO₃, (c) -C6SO₃, (d) -C8SO₃, (e) - C10SO₃, (f) -C12SO₃ LDH. The solid lines are guided to eyes.

Fig S8. Hysteresis loops at 2 K: Co-Ni-Br (a), $-NO_3$ (b), $-C4SO_3$ (c), $-C6SO_3$ (d), $-C8SO_3$ (e), $-C10SO_3$ (f), $-C12SO_3$ (g) LDH. The solid lines are guided to eyes.