Supporting Information for

Anion induced structural transformation in silver-(3,6-dimethoxy-1,2,4,5-tetrazine) coordination polymers under mechanochemical conditions

Philjae Kang, Sooyong Jung, Junhyung Lee, Hye Ji Kang, Hyehee Lee and Moon-Gun Choi*

Department of Chemistry, Yonsei University, Seoul, 120-749, Republic of Korea

*Corresponding author.

E-mail address: choim@yonsei.ac.kr (Moon-Gun Choi).

General Methods All glassware was oven-dried prior to use. Powder X-ray diffraction (PXRD) analysis was performed on a RIGAKU Ultima IV diffractometer using Cu K α radiation (wavelength 1.541 Å) in focused beam configuration with a continuous scan rate of 3° min⁻¹ in the 3-80° range. Simulated PXRD patterns were calculated from single crystal X-ray diffraction data using the Mercury 3.3 program. Elemental analyses were performed on a Thermo Finnigan Flash EA1112 unit. IR spectra were recorded using KBr pellets for solids on a Bruker model Vertex70 spectrometer

Mechanochemical reactions were carried out in a FRITSCH Pulverisette 23 mini-mill model, using 10 ml zircon oxide grinding bowls with 10 mm diameter zirconium oxide milling balls. The reactions were monitored by powder X-ray diffractions.

Materials Silver(I) perchlorate (AgClO₄, anhydrous, Alfa Aesar) and Silver(I) trifluoromethanesulfonate (AgCF₃SO₃, 98 %, Alfa Aesar) were used as received. 3,6-dimethoxy-1,2,4,5-tetrazine (**dmotz**) was prepared and purified by sublimation following literature procedure previously reported.¹

Synthesis of [Ag(dmotz)(CF₃SO₃)]_n (1)

dmotz + $AgCF_3SO_3 \longrightarrow [Ag(dmotz)]_nCF_3SO_3 (1)$

A mixture of $Ag(CF_3SO_3)$ (13mg, 0.05 mmol) and dmotz (7 mg, 0.05 mmol) were milled in a zirconium oxide grinding bowl with a zirconium oxide milling ball (10 mm in diameter) in a mini-

mill up to 30 Hz for 5 min. Progress of the reaction was monitored by Powder XRD analysis. Initially pink mixture turned to dark red solid with quantitative yields. The single crystal of 1 was obtained by slow diffusion of diethyl ether to THF solution of 1.

Synthesis of $[{Ag(dmotz)_2}(ClO_4)]_n$ (2)

dmotz + AgClO₄ \longrightarrow [Ag(dmotz)₂]_nClO₄ (2)

A mixture of $Ag(ClO_4)$ (20 mg, 0.1 mmol) and dmotz (28 mg, 0.2 mmol) were milled in a zirconium oxide grinding bowl with a zirconium oxide milling ball (10 mm in diameter) in a minimill up to 40 Hz for 5 min. Progress of the reaction was monitored by Powder XRD analysis. Initially pale pink mixture turned to bright red solid.

The single crystal of **2** was obtained by vapor diffusion of diethyl ether into CH_2Cl_2 solution of **1**. Elemental analysis for $C_8H_{12}AgClN_8O_8$, calcd. (%): C, 19.55; H, 2.46; N, 22.80. Found (%): C, 19.53; H, 2.42; N, 22.78.

Structural transformation from $[Ag(dmotz)(CF_3SO_3)]_n$ to $[{Ag(dmotz)_2}(CIO_4)]_n$

 $[Ag(dmotz)(CF_{3}SO_{3})]_{n} + dmotz \xrightarrow{NaClO_{4}} [Ag(dmotz)_{2}]ClO_{4} + NaCF_{3}SO_{3}$

A mixture of compound **1** (40mg, 0.10 mmol), $NaClO_4$ (12mg, 0.10 mmol) and dmotz(14mg, 0.1 mmol) were in a zirconium oxide grinding bowl with a zirconium oxide milling ball (10 mm in diameter) in a mini-mill up to 40 Hz for 5 min.

Single crystal X-ray diffraction analysis of [Ag(dmotz)(CF₃SO₃)]_n (1) A specimen of suitable size and quality was coated with Paratone oil and mounted on a MiTeGen MicroMount©. Reflection data were collected on a Bruker D8 Venture PHOTON 100 area detector diffractometer, with Mo K_a ($\lambda = 0.71073$ Å). The full sphere of reflection data was collected as ω and φ scan frames at 0.5°/frame and an exposure time of 10 s/frame. Cell parameters were determined and refined by the APEX2 program.² Data reduction was performed using the SAINT software.³ The data were corrected for Lorentz and polarization effects. Empirical absorption correction was applied using the SADABS program.⁴ The structure was solved by direct methods and all nonhydrogen atoms were subjected to anisotropic refinement by full-matrix least-squares on F² using the SHELXTL and Olex 2 GUI program.⁵ Hydrogen atoms were placed at their geometrically calculated positions and refined riding on the corresponding carbon atoms with isotropic thermal parameters. Single crystal X-ray diffraction analysis of [{Ag(dmotz)}(ClO₄)]_n (2) A specimen of suitable size and quality was coated with Paratone oil and mounted on a MiTeGen MicroMount©. Reflection data were collected on a Bruker D8 Venture PHOTON 100 area detector diffractometer, with Mo K_a ($\lambda = 0.71073$ Å). The full sphere of reflection data was collected as ω and φ scan frames with 1°/frame and an exposure time of 20 s/frame. Cell parameters were determined and refined by the APEX2 program.² Data reduction was performed using SAINT software.³ The data were corrected for Lorentz and polarization effects. An empirical absorption correction was applied using the SADABS program.⁴ The structure was solved by direct methods, and all nonhydrogen atoms were subjected to anisotropic refinement by full-matrix least-squares on F² using the SHELXTL and Olex 2 GUI program.⁵ Hydrogen atoms were placed at their geometrically calculated positions and refined riding on the corresponding carbon atoms with isotropic thermal parameters.

	1	2
Empirical formula	$C_5H_6AgF_3N_4O_5S$	C ₈ H ₁₂ AgClN ₈ O ₈
Formula weight	399.07	491.58
Temperature/K	303.5	139.9
Crystal system	Orthorhombic	triclinic
Space group	Aea2	P-1
a/Å	20.8674(13)	7.1463(10)
b/Å	14.9814(10)	7.5474(10)
c/Å	7.6418(4)	7.6047(10)
α/°	90	87.511(5)
β/°	90	88.728(5)
γ/°	90	74.489(5)
Volume/Å ³	2389.0(3)	394.83(9)
Z	8	1
$\rho_{calc}mg/mm^3$	2.219	2.067
m/mm ⁻¹	1.925	1.508
F(000)	1552.0	244.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.2	0.2 imes 0.1 imes 0.1
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection	5.438 to 49.96	5.362 to 86.724
Index ranges	$\text{-}24 \le h \le 24, \text{-}17 \le k \le 17, \text{-}8 \le l \le 9$	$-13 \le h \le 13, -14 \le k \le 14, -14 \le l \le 14$
Reflections collected	26101	25128
Independent reflections	2018 [R(int) = 0.0193, R(sigma)= 0.0083]	5711 [$R_{int} = 0.0503$, $R_{sigma} = 0.0521$]
Data/restraints/parameters	2018/1/175	5711/0/141
Goodness-of-fit on F ²	1.103	1.070
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0176$, $wR_2 = 0.0470$	$R_1 = 0.0346$, $wR_2 = 0.0748$
Final R indexes [all data]	$R_1 = 0.0179 \text{ w} R_2 = 0.0473$	$R_1 = 0.0483, wR_2 = 0.0802$
Largest diff. peak/hole / e Å-3	0.35/-0.27	0.95/-0.54
Flack parameter	0.002(7)	

Table S1. Crystallographic Data for $[Ag(dmotz)(CF_3SO_3)]_n$, 1 and $[Ag(dmotz)_2(CF_3SO_3)]_n$, 2

Ag1-N1	2.298(3)	C6-O9	1.317(5)	
Ag1-N2 ¹	2.378(3)	O7-C8	1.438(6)	
Ag1-O13 ¹	2.494(6)	O9-C10	1.448(6)	
Ag1-013	2.524(5)	S11-C12	1.805(6)	
N1-N2	1.311(5)	S11-O13	1.436(4)	
N1-C6	1.337(5)	S11-O14	1.408(4)	
N2-Ag1 ²	2.378(3)	S11-O15	1.438(4)	
N2-C3	1.341(6)	C12-F16	1.330(7)	
C3-N4	1.333(5)	C12-F17	1.324(7)	
C3-O7	1.308(6)	C12-F18	1.297(6)	
N4-N5	1.313(6)	O13-Ag1 ²	2.494(6)	
N5-C6	1.326(5)	_		
1/0 37 + 37 1/0 + 77 21	0 37 + 37 1 /0 + 7			

Table S2. Bond Distances (Å) in [Ag(dmotz)₂(CF₃SO₃)]_n, 1^a

¹1/2-X,+Y,1/2+Z; ²1/2-X,+Y,-1/2+Z

^a Numbers in parentheses are estimated standard deviations in the least significant digits.

N1-Ag1-N2 ¹	120.56(10)	O9-C6-N5	121.3(3)
N1-Ag1-O13	87.71(15)	C3-O7-C8	118.3(4)
N1-Ag1-O13 ¹	147.44(12)	C6-O9-C10	117.8(4)
N2 ¹ -Ag1-O13	89.97(14)	O13-S11-C12	104.6(3)
N2 ¹ -Ag1-O13 ¹	86.72(12)	O13-S11-O15	109.1(3)
O13 ¹ -Ag1-O13	111.47(17)	O14-S11-C12	103.6(3)
N2-N1-Ag1	121.6(2)	O14-S11-O13	119.0(3)
N2-N1-C6	117.4(3)	O14-S11-O15	114.8(3)
C6-N1-Ag1	120.2(3)	O15-S11-C12	103.9(3)
N1-N2-Ag1 ²	126.4(2)	F16-C12-S11	110.6(4)
N1-N2-C3	117.4(3)	F17-C12-S11	111.6(4)
C3-N2-Ag1 ²	114.1(3)	F17-C12-F16	104.4(6)
N4-C3-N2	124.6(5)	F18-C12-S11	112.2(4)
O7-C3-N2	113.9(3)	F18-C12-F16	107.9(5)
O7-C3-N4	121.5(5)	F18-C12-F17	109.7(6)
N5-N4-C3	117.6(4)	Ag1 ² -O13-Ag1	107.95(14)
N4-N5-C6	117.5(3)	S11-O13-Ag1	147.7(4)
N5-C6-N1	125.1(4)	S11-O13-Ag1 ²	104.1(3)
O9-C6-N1	113.6(4)		
1/0 37 + 37 1/0 + 77 21/0	$\mathbf{X} + \mathbf{X} = 1 / 0 + 7$		

¹1/2-X,+Y,1/2+Z; ²1/2-X,+Y,-1/2+Z

^a Numbers in parentheses are estimated standard deviations in the least significant digits.

Ag1-N1	2.4593(10)	N4-C6 ³	1.3370(14)	
Ag1-N1 ¹	2.4593(10)	N5-C6	1.3379(14)	
Ag1-N4 ¹	2.4341(10)	C6-N4 ³	1.3371(14)	
Ag1-N4	2.4342(10)	C6-O9	1.3267(13)	
N1-N2	1.3160(15)	O7-C8	1.4439(18)	
N1-C3 ²	1.3366(13)	O9-C10	1.4433(18)	
N2-C3	1.3334(14)	Cl11-O12	1.442(3)	
C3-N1 ²	1.3366(13)	Cl11-O13	1.369(2)	
C3-O7	1.3242(15)	Cl11-O14	1.476(2)	
N4-N5	1.3197(13)	Cl11-015	1.451(2)	

Table S4. Bond Distances (Å) in [Ag(dmotz)₂(ClCO₄)]_n, 2 ^a

¹1/2-X,+Y,1/2+Z; ²1/2-X,+Y,-1/2+Z

^a Numbers in parentheses are estimated standard deviations in the least significant digits.

N1 ¹ -Ag1-N1	180.00(5)	N5-N4-C6 ³	117.92(9)	
N4 ¹ -Ag1-N1 ¹	87.30(3)	C6 ³ -N4-Ag1	113.48(7)	
N4-Ag1-N11	92.70(3)	N4-N5-C6	116.48(9)	
N4-Ag1-N1	87.30(3)	N4 ³ -C6-N5	125.60(9)	
N4 ¹ -Ag1-N1	92.70(3)	O9-C6-N4 ³	113.52(10)	
N4 ¹ -Ag1-N4	180	O9-C6-N5	120.87(10)	
N2-N1-Ag1	127.29(6)	C3-O7-C8	117.49(11)	
N2-N1-C32	117.61(9)	C6-O9-C10	117.47(11)	
C3 ² -N1-Ag1	115.08(8)	O12-Cl11-O14	107.79(16)	
N1-N2-C3	116.94(9)	O12-Cl11-O15	108.5(2)	
N2-C3-N1 ²	125.45(11)	O13-Cl11-O12	111.86(19)	
O7-C3-N1 ²	113.57(10)	O13-Cl11-O14	110.26(17)	
O7-C3-N2	120.98(9)	O13-Cl11-O15	112.57(18)	
N5-N4-Ag1	128.59(7)	O15-Cl11-O14	105.58(16)	
11/2 X + X 1/2 + 7 21/	1 X + X = 1/2 + 7			

Table S5. Bond Angles (deg) in [Ag(dmotz)₂(Ag(dmotz)₂(ClCO₄)]_n, 2 ^a

¹1/2-X,+Y,1/2+Z; ²1/2-X,+Y,-1/2+Z

^a Numbers in parentheses are estimated standard deviations in the least significant digits.

Figure S2. Asymmetric unit of **2** with 50% probability thermal ellipsoids(Up) and packing structure(down).

PXRD patterns of: (a) reaction mixture of $Ag(CF_3SO_3)$ and dmotz; (b) reaction mixture of $Ag(CF_3SO_3)$ and dmotz after 1 min ball milling(30 Hz); (c) reaction mixture of $Ag(CF_3SO_3)$ and dmotz after 2 min ball milling(30 Hz)

PXRD patterns of: (a) reaction mixture of $Ag(ClO_4)$ and dmotz; (b) reaction mixture of $Ag(ClO_4)$ and dmotz after 1 min ball milling(25 Hz); (c) reaction mixture of $Ag(ClO_4)$ and dmotz after 2 min ball milling(25 Hz)

Figure S5. PXRD patterns of with NaClO₄, (a) $[{Ag(dmotz)_2}(ClO_4)]_n$, (b) ${Ag(dmotz)_2}(ClO_4)]_n$, Na(CF₃SO₃) from the reaction of **1** (c) Na(CF₃SO₃) and (d) $[Ag(dmotz)(CF_3SO_3)]_n$.

Figure S6. FT-IR spectrum for (a) dmotz, (b) $[Ag(dmotz)(CF_3SO_3)]_n$ and $[Ag(dmotz)_2](ClO_4)]_n$.

Supporting Information References:

¹(a) Y. H. Gong, F. Miomandne, R. Méallet-Renault, S. Badré, L. Galmiche, J. Tang, P. Audebert, G. Clavier, Eur. *J. Org. Chem.* 2009, 6121-6128; (b) R. I. Ishmetova, N. I. Latosh, I. N. Ganebnykh, N. K. Ignatenko, S. G. Tolshchina, G. L. Rusinov, Russ. *J. Org. Chem*, 2009, **45**, 1102-1107

² APEX2 (version 2012.2-0), Data collection software, Bruker AXS Inc., Madison, Wiskonsin, (2011).

³ SAINT (version 6.0), Data integration software, Bruker AXS Inc., Madison, Wiskonsin, (2011). ⁴ G. M. Sheldrick, version 2.05 SADABS, Program for absorption correction with the Bruker SMART system, Universitat Göttingen, Germany (2011).

⁵ (a) G. M. Sheldrick, *SHELXL-93, Program for the refinement of crystal structures*, Universitat Göttingen, Germany (2004). (b) Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program (2009). *J. Appl. Cryst.*, **42**, 339-341.