Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2015

Gadolinium(III) Complex based Dual-Modal Probe for MRI and Fluorescence Sensing Fluoride ion in Aqueous Medium and *in Vivo*

Yue Wang,^a Renfeng Song,^b Ke Guo,^b Qingtao Meng,^{a*} Run Zhang,^{a,c} Xiangfeng Kong^a and Zhiqiang Zhang^{a*}

^a School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China

E-mail: qtmeng@ustl.edu.cn; zhangzhiqiang@ustl.edu.cn. Tel: +86-421-5928009

^b Ansteel Mining Engineering Corporation, 27 Lvhua Street, Anshan, 114002, P. R. China, 27 Lvhua Street, Anshan, 114002, P. R. China

^c Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia

Fig. S1 HPLC of Gd(TTA)₃-**DPPZ** (methanol as eluent).

Fig. S2 ESI-MS spectrum of Gd(TTA)₃-DPPZ.

Fig. S3 Variations of fluorescence intensity of $Gd(TTA)_3$ -**DPPZ** (10 μ M) at 420 nm in aqueous solution in the presence and absence of fluoride ion (0.7 mM) as a function of pH. Eexcitation at 340 nm.

Fig. S4 Fluorescence spectra of Gd(TTA)₃-**DPPZ** (10 μ M) at different time in H₂O (THF: H₂O = 5:5, pH = 7.4). The intensities were recorded at 420 nm, excitation at 340 nm.

Fig. S5 Normalized fluorescence emission and UV-Vis absorption spectra of TTA, DPPZ, and $Gd(TTA)_3$ -**DPPZ** (10 μ M) in H_2O (THF: H_2O = 5:5, pH = 7.4).

Fig. S6 Changes in fluorescence (a), (b), and absorption (c), (d) spectra of TTA and DPPZ in the presence of increased concentrations of fluoride in H_2O (THF: $H_2O = 5.5$, pH = 7.4).

Fig. S7 The linear fluorescence responses of $Gd(TTA)_3$ -**DPPZ** (2 μ M) in H_2O (THF: $H_2O = 5:5$, pH = 7.4) versus low concentration fluoride concentration (0–50 μ M) at 420 nm. Excitation was performed at 340 nm.

Fig. S8 MDA-MB-231 cell viability values (%) assessed using an MTT proliferation test versus incubation concentrations of Gd(TTA)₃-**DPPZ**.

MTT cell viability assays. MTT assay was utilized to investigate the cytotoxicity of $Gd(TTA)_3$ -DPPZ. MDA-MB-231 cells were seeded at a density of 5×10^4 cells/mL in a 96-well micro-assay culture plate and growth 24 h at 37 °C in a 5% CO_2 incubator. $Gd(TTA)_3$ -DPPZ in fresh culture medium was added into each well with different concentrations from 10 to 2000 μ M. Control wells were prepared by the addition of culture medium, and wells containing culture media without cells were used as blanks. After incubation at 37 °C in a 5% CO_2 incubator for 6 h, cell culture medium was removed and cells were washed three times with PBS. Then, 100μ L, 0.5 mg/mL MTT solution in PBS was added to each well, and the cells were incubated for another 4 h. The excess MTT solution was then carefully removed from each well, and the formed formazan was dissolved in 100μ L of DMSO (dimethyl sulfoxide). The optical density of each well was then measured at a wavelength of 540 nm using a microplate reader (Bio-Rad, xMark). The results from the five individual experiments were averaged. The following formula was used to calculate the viability of cell growth:

Vialibity (%) = (mean of absorbance value of treatment group–blank)/(mean absorbance value of control–blank) \times 100.

Table S1. Comparisons of the sensitivity of Gd(TTA)₃-**DPPZ** with other reported fluoride ion fluorescence probes

Sensing mechanisms	No.	Probe Name	Solution	Fluorescence sensitivity
Hydrogen bonding	Refer. 1	Sensor 1	CH ₃ CN: HEPES (0.02 M, pH 7.2)	1.21 μΜ
	Refer. 2	R1	DMF	$0.4~\mu M$
	Refer. 3	probe 1	DMSO	1.8 μΜ
	Refer. 4	1-Naphthaldoxime 1	DMSO/Water (99/1)	50 <i>ppb</i>
	Refer. 5	S2	DMSO	10 <i>ppm</i>
Fluoroborate complexation	Refer. 6	$[\mathbf{Eu.L_1}]^+$	HEPES (pH 7.4)	0.2 μΜ
	Refer. 7	BAPTA- Ca	MOPS buffer (pH 7.0).	0.3 mM
	Refer. 8	[Zr(H ₂ O) ₂ edta]- flavonol	Acetate buffer (pH 5.0);	3 μM (60 <i>ppb</i>)
	Refer. 9	RF	Ethanol/Water (2/3)	1.6 μΜ
	Refer. 10	Sensor 1	CH ₃ CN	1.0 μΜ
Fluoride mediated desilylation	Refer. 11	Probe FP	CH ₃ CN	19 <i>ppb</i>
	Refer. 12	BW-F-204	PBS (pH 7.4)	18 μΜ
	Refer. 13	QF	PBS (pH 7.4)	0.5 μΜ
	Refer. 14	FP-1	HEPES-CH ₃ CN (1:5, pH 7.4)	0.59 μΜ
	This paper	Gd(TTA) ₃ - DPPZ	THF: H_2O (5:5, $pH = 7.4$)	70 nM (1.33 <i>ppb</i>)

References:

- 1. A. K. Mahapatra, R. Maji, K. Maiti, S. S. Adhikari, C. D. Mukhopadhyay and D. Mandal, *Analyst*, 2014, **139**, 309–317.
- 2. C. Parthiban and K. P. Elango, Sensors and Actuators B, 2015, 215, 544–552.
- 3. M. Yu, J. Xu, C. Peng, Z. Li, C. Liu and L. Wei, *Tetrahedron*, 2016, 72, 273–278.
- 4. C. B. Rosen, D. J. Hansen and K. V. Gothelf, Org. Biomol. Chem., 2013, 11, 7916–7922.
- 5. M. S. Kumar, S. L. A. Kumar and A. Sreekanth, *Anal. Methods*, 2013, **5**, 6401–6410.
- 6. S. J. Butler, Chem. Commun., 2015, 51, 10879–10882.

- 7. S. Rochat and Kay Severin, *Chem. Commun.*, 2011, 47, 4391–4393.
- 8. Y. Takahashi, D. A. P. Tanaka, H. Matsunaga and T. M. Suzuki, *J. Chem. Soc., Perkin Trans.*, 2002, **2**, 759–762.
- 9. Y. Mia, Z. Caob, Y. Chen, S. Long, Q. Xie, D. Liang, W. Zhu and J. Xiang, *Sensors and Actuators B*, 2014, **192**, 164–172
- 10. Y. Bao, B. Liu, F. Du, J. Tian, H. Wang and R. Bai, *J. Mater. Chem.*, 2012, **22**, 5291–5294.
- 11. S. Zhang, J. Fan, S. Zhang, J. Wang, X. Wang, J. Du and X. Peng, *Chem. Commun.*, 2014, **50**, 14021–14024.
- 12. Y. Zheng, Y. Duan, K. Ji, R.-L. Wang and B. Wang, RSC Adv., 2016, 6, 25242–25245.
- 13. W. Hu, L. Zeng, Y. Wang, Z. Liu, X. Ye and C. Li, *Analyst*, 2016, DOI: 10.1039/C6AN00905K.
- 14. M. Yoo, S. Park and H.-J. Kim, RSC Adv., 2016, 6, 19910–19915.