Supporting information

Colour tuning by the stepwise synthesis of mononuclear and homo- and hetero-dinuclear platinum(II) complexes using a zwitterionic quinonoid ligand

Paramita Kar, Masaki Yoshida, Atsushi Kobayashi, Lucie Routaboul, Pierre Braunstein, Masako Kato

Scheme S1. Molecular orbital diagrams of QH_2 , 1, $[1-H]^-$ (= deprotonated form of 1), and 2 calculated by the DFT method. Orbitals represented as blue and red lines are π orbitals involving NCCCN and OCCCO subunits, respectively (the detailed results of the DFT calculations for QH_2 and $[1-H]^-$ are shown in Fig. S8 and Scheme S2).

Scheme S2. Calculated bond distances in quinonoid ligand Q^{2-} in the optimized structure of $[1-H]^{-}$. In contrast to the *p*-quinone like structure of 1, ligand Q^{2-} of $[1-H]^{-}$ adopted *o*-quinone form in this optimized structure, presumably due to the polarization by the positively charged Pt(II) center.

Fig. S1. Packing structure of complex 1.

Fig. S2. Coordination environment around the metal centers in one crystallographically independent dinuclear unit complex **2**. Coordination environment of another unit is shown in main manuscript.

Fig. S3. Packing structure of complex 2.

Fig. S4. Coordination environment around the metal centers in one crystallographically independent dinuclear unit complex **3**. Coordination environment of another unit is shown in main manuscript.

Fig. S5. ESI-TOF mass spectrum of **3** in CHCl₃ together with the simulation patterns of the molecular ions $[3 + H]^+$ and $\{[3]_2 + H\}^+$. Note that there are no peaks of Pt-Pt and Pd-Pd dimers in the spectrum.

Fig. S6. UV–vis diffuse reflectance spectra for compounds 1 (black line), 2 (red line), and 3 (blue line) at room temperature. Observed absorption bands were almost similar to those of UV-vis absorption spectra in CH_2Cl_2 (Fig. 5), indicating that all three compound have only the weak or negligible intermolecular interactions in solid states, as suggested by X-ray crystallographic analyses (Fig. 1-3).

(a)

96 (LUMO+2) -1.3486 eV

93 (HOMO) -5.4149 eV

95 (LUMO+1) -1.8487 eV

92 (HOMO-1) -5.7967 eV

94 (LUMO) -2.7371 eV

91 (HOMO-2) -6.1090 eV

90 (HOMO-3) -6.23590 eV

(continued)

147 (LUMO+4) -1.2829 eV

146 (LUMO+3) -1.2878 eV

145 (LUMO+2) -1.7404 eV

144 (LUMO+1) -1.8227 eV

143 (LUMO) -2.7378 eV

140 (HOMO-2) -5.7529 eV

139 (HOMO-3) -6.0957 eV

142 (HOMO) -5.0029 eV

141 (HOMO-1) -5.4213 eV

138 (HOMO-4) -6.1089 eV

135 (HOMO-7) -6.5669 eV

137 (HOMO-5) -6.2446 eV

134 (HOMO-8) -6.6133 eV

136 (HOMO-6) -6.3549 eV

133 (HOMO-9) -7.0178 eV

(continued)

9

(c)

144 (LUMO+1) -1.8452 eV

146 (LUMO+3) -1.3313 eV

143 (LUMO) -2.6262 eV

142 (HOMO) -4.9910 eV

141 (HOMO-1) -5.4556 eV

138 (HOMO-4) -6.1369 eV

135 (HOMO-7) -6.5533 eV

140 (HOMO-2) -5.9074 eV

137 (HOMO-5) -6.2401 eV

134 (HOMO-8) -6.6756 eV

136 (HOMO-6) -6.4760 eV

133 (HOMO-9) -6.9710 eV

Fig. S7. Relevant calculated frontier orbitals for the electronic transitions observed in (a) **1**, (b) **2** and (c) **3**

(a)

96 (LUMO+2) 1.4136 eV

95 (LUMO+1) 1.0990 eV

94 (LUMO) 0.5617 eV

93 (HOMO) -1.5651 eV

42 (HOMO-2) -6.8871 eV

92 (HOMO-1) -2.2084 eV

(b)

43 (HOMO-1) -6.5665 eV

Fig. S8. Frontier orbitals of (a) $[1-H]^-$ (= deprotonated form of 1, which was used as a synthetic intermediate of 2 and 3) and (b) QH₂.

41 (HOMO-3) -6.9308 eV

Bond distances (Å)	1	2	3
C(12)-C(13)	1.53(1)	1.51(1)	1.49(1)
C(15)-C(16)	1.55(1)	1.52(1)	1.52(1)
C(13)-C(14)	1.43(1)	1.38(1)	1.41(1)
C(14)-C(15)	1.34(1)	1.39(1)	1.36(1)
C(12)-C(17)	1.35(1)	1.40(1)	1.39(1)
C(16)-C(17)	1.38(1)	1.39(1)	1.39(1)

Table S1. Bond distances within the [O,N,N,O] donor quinonoid moieties of complexes 1, 2 and 3:

Table S2. Electronic Spectra of the complexes in CH_2Cl_2 .

Complex	$\lambda_{max}/ nm (\epsilon / M^{-1} cm^{-1})$
1	551 (258.55), 444 (24089), 348 (16451)
2	740 (4774), 686 (4374), 512 (20137), 376 (7347)
3	701 (6209), 656 (6080), 478 (30668), 366 (13340)

Table S3. The electronic transitions of **1** calculated by the TD-DFT method, based on the optimized structure (The corresponding molecular orbitals are shown in Fig. S7).

Evoited State	$\mathbf{E}(\mathbf{aV})$) (mm)	$f_{a}(>0.01)b$	Maior contributions	$ CL_{aaafl}(>0.2) $
Excited State	E(ev)	λ (nm)	$\int u (> 0.01)^{0}$	Major contributions	CI coel (> 0.3)
1	2.0552	603.28	0.0079	$HOMO \rightarrow LUMO$	0.64782
2	2.6799	462.65	0.0351	HOMO–3 \rightarrow LUMO	0.45633
				HOMO–2 \rightarrow LUMO	0.45553
3	2.6888	461.12	0.1031	HOMO–3 \rightarrow LUMO	0.49554
				HOMO-1 \rightarrow LUMO	0.38173
5	2.9044	426.88	0.0596	$HOMO \rightarrow LUMO+1$	0.61592
6	2.9300	423.16	0.3646	HOMO–2 \rightarrow LUMO	0.34084
				HOMO-1 \rightarrow LUMO	0.38739
11	3.5370	350.53	0.0514	$HOMO-1 \rightarrow LUMO+1$	0.42204
				HOMO \rightarrow LUMO+2	0.45458

^a Oscillator strength. ^b Except for the excited state 1.

Excited State	E (eV)	λ (nm)	$f^{a}(>0.01)$	Major contributions	CI coef (> 0.3)
1	1.7796	696.68	0.0826	$HOMO \rightarrow LUMO$	0.57602
2	2.3211	534.16	0.7620	$HOMO-1 \rightarrow LUMO$	0.59004
7	2.7950	443.59	0.0316	$HOMO \rightarrow LUMO + 2$	0.64667
8	2.9580	419.15	0.1963	HOMO–5 \rightarrow LUMO	0.62525
9	3.0327	408.83	0.0238	$HOMO-1 \rightarrow LUMO+1$	0.58379
11	3.1010	399.82	0.0203	$HOMO-2 \rightarrow LUMO+1$	0.31533
				$HOMO-1 \rightarrow LUMO+2$	0.49864
12	3.2809	377.90	0.0249	HOMO \rightarrow LUMO+3	0.66064
13	3.2917	376.66	0.0133	$HOMO \rightarrow LUMO+4$	0.63706
14	3.3649	368.46	0.0181	HOMO–9 \rightarrow LUMO	0.33107
				HOMO–7 \rightarrow LUMO	0.48406
17	3.4086	363.74	0.0159	HOMO-8 \rightarrow LUMO	0.55708

Table S4. The electronic transitions of **2** calculated by the TD-DFT method, based on the optimized structure (The corresponding molecular orbitals are shown in Fig. S7).

^a Oscillator strength.

Excited State	E (eV)	λ (nm)	$f^{a}(>0.01)$	Major contributions	CI coef (> 0.3)
1	1.8728	662.03	0.0820	$HOMO \rightarrow LUMO$	0.59004
2	2.4282	510.61	0.5123	$HOMO-1 \rightarrow LUMO$	0.58332
3	2.6520	467.51	0.0403	HOMO $-3 \rightarrow$ LUMO	0.58126
4	2.6979	459.56	0.1563	HOMO $-3 \rightarrow$ LUMO	0.35863
				HOMO–2 \rightarrow LUMO	0.41426
6	2.7632	448.69	0.0709	$HOMO-4 \rightarrow LUMO$	0.57932
8	3.0629	404.79	0.0577	HOMO–5 \rightarrow LUMO	0.48472
				$HOMO-1 \rightarrow LUMO+2$	0.38380
9	3.0988	400.10	0.0674	HOMO–5 \rightarrow LUMO	0.44002
				$HOMO-1 \rightarrow LUMO+1$	0.32391
12	3.2919	376.64	0.0612	$HOMO \rightarrow LUMO+4$	0.57761
14	3.3333	371.96	0.0265	HOMO– $6 \rightarrow$ LUMO	0.50978
				$HOMO \rightarrow LUMO+4$	0.30332
17	3.4415	360.27	0.0144	$HOMO-9 \rightarrow LUMO$	0.40376
				HOMO–7 \rightarrow LUMO	0.45490
18	3.4662	357.70	0.0148	HOMO-10 \rightarrow LUMO	0.48405

Table S5. The electronic transitions of **3** calculated by the TD-DFT method, based on the optimized structure (The corresponding molecular orbitals are shown in Fig. S7).

^a Oscillator strength.